September 21, 2016
Similar papers 2
September 24, 2019
We define a family of the braid group representations via the action of the $R$-matrix (of the quasitriangular extension) of the restricted quantum $\mathfrak{sl}(2)$ on a tensor power of a simple projective module. This family is an extension of the Lawrence representation specialized at roots of unity. Although the center of the braid group has finite order on the specialized Laurence representations, this action is faithful for our extension.
January 25, 2009
Given two nonzero complex parameters $l$ and $m$, we construct by the mean of knot theory a matrix representation of size $\chl$ of the BMW algebra of type $A_{n-1}$ with parameters $l$ and $m$ over the field $\Q(l,r)$, where $m=\unsurr-r$. As a representation of the braid group on $n$ strands, it is equivalent to the Lawrence-Krammer representation that was introduced by Lawrence and Krammer to show the linearity of the braid groups. We prove that the Lawrence-Krammer repres...
April 4, 2002
The Lawrence-Krammer representation of the braid groups recently came to prominence when it was shown to be faithful by myself and Krammer. It is an action of the braid group on a certain homology module $H_2(\tilde{C})$ over the ring of Laurent polynomials in $q$ and $t$. In this paper we describe some surfaces in $\tilde{C}$ representing elements of homology. We use these to give a new proof that $H_2(\tilde{C})$ is a free module. We also show that the $(n-2,2)$ representat...
September 8, 2021
In the present paper, we construct a variant of the Burau representation of two generalizations of the classical braid group. For the Gassner representation, we propose an iterative procedure to find and generalize the extension of this representation.
February 23, 2002
A non-singular sesquilinear form is constructed that is preserved by the Lawrence-Krammer representation. It is shown that if the polynomial variables q and t of the Lawrence-Krammer representation are chosen to be appropriate algebraically independant unit complex numbers, then the form is negative-definite Hermitian. Since unitary matrices diagonalize, the conjugacy class of a matrix in the unitary group is determined by its eigenvalues. It is shown that the eigenvalues of ...
October 17, 2008
It is known that the Lawrence-Krammer representation of the Artin group of type $A_{n-1}$ based on the two parameters $t$ and $q$ that was used by Krammer and independently by Bigelow to show the linearity of the braid group on $n$ strands is generically irreducible. Here, we recover this result and show further that for some complex specializations of the parameters the representation is reducible. We give all the values of the parameters for which the representation is redu...
May 23, 2012
We show that Lawrence's representation and linear representations from quantum sl_2 called generic highest weight vectors detect the dual Garside length of braids in a simple and natural way. That is, by expressing a representation as a matrix over a Laurent polynomial ring using certain natural basis, the span of the variable is equal to the constant multiples of the dual Garside length.
September 8, 2023
We establish a link between the new theory of $q$-deformed rational numbers and the classical Burau representation of the braid group $\mathrm{B}_3$. We apply this link to the open problem of classification of faithful complex specializations of this representation. As a result we provide an answer to this problem in terms of the singular set of the $q$-rationals and prove the faithfulness of the Burau representation specialized at complex $t\in \mathbb{C}^*$ outside the annu...
September 28, 2021
Let $C_n$ be the group of conjugating automorphisms. We study the representation $\rho$ of $C_n$, an extension of Lawrence-Krammer representation of the braid group $B_n$, defined by Valerij G. Bardakov. As Bardakov proved that the representation $\rho$ is unfaithful for $n \geq 5$, the cases $n=3,4$ remain open. In our work, we make attempts towards the faithfulness of $\rho$ in the case $n=3$.
March 1, 2024
Given a representation $\varphi \colon B_n \to G_n$ of the braid group $B_n$, $n \geq 2$ into a group $G_n$, we are considering the problem of whether it is possible to extend this representation to a representation $\Phi \colon SM_n \to A_n$, where $SM_n$ is the singular braid monoid and $A_n$ is an associative algebra, in which the group of units contains $G_n$. We also investigate the possibility of extending the representation $\Phi \colon SM_n \to A_n$ to a representatio...