December 31, 2016
It has been shown in recent years that the stochastic block model (SBM) is sometimes undetectable in the sparse limit, i.e., that no algorithm can identify a partition correlated with the partition used to generate an instance, if the instance is sparse enough and infinitely large. In this contribution, we treat the finite case explicitly, using arguments drawn from information theory and statistics. We give a necessary condition for finite-size detectability in the general S...
January 24, 2015
A non-backtracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The non-backtracking matrix of a graph is indexed by its directed edges and can be used to count non-backtracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we study the largest eigenvalues ...
November 13, 2023
We define a graph to be $S$-regular if it contains an equitable partition given by a matrix $S$. These graphs are generalizations of both regular and bipartite, biregular graphs. An $S$-regular matrix is defined then as a matrix on an $S$-regular graph consistent with the graph's equitable partition. In this paper we derive the limiting spectral density for large, random $S$-regular matrices as well as limiting functions of certain statistics for their eigenvector coordinates...
June 24, 2013
We derive rigorous bounds for well-defined community structure in complex networks for a stochastic block model (SBM) benchmark. In particular, we analyze the effect of inter-community "noise" (inter-community edges) on any "community detection" algorithm's ability to correctly group nodes assigned to a planted partition, a problem which has been proven to be NP complete in a standard rendition. Our result does not rely on the use of any one particular algorithm nor on the an...
September 8, 2016
Motivated by community detection, we characterise the spectrum of the non-backtracking matrix $B$ in the Degree-Corrected Stochastic Block Model. Specifically, we consider a random graph on $n$ vertices partitioned into two equal-sized clusters. The vertices have i.i.d. weights $\{ \phi_u \}_{u=1}^n$ with second moment $\Phi^{(2)}$. The intra-cluster connection probability for vertices $u$ and $v$ is $\frac{\phi_u \phi_v}{n}a$ and the inter-cluster connection probability is...
June 3, 2009
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, p...
February 17, 2006
Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, si...
August 28, 2006
We present a compact matrix formulation of the modularity, a commonly used quality measure for the community division in a network. Using this formulation we calculate the density of modularities, a statistical measure of the probability of finding a particular modularity for a random but valid community division into $C$ communities. We present our results for some well--known and some artificial networks, and we conclude that the general features of the modularity density a...
July 11, 2007
The modularity of a network quantifies the extent, relative to a null model network, to which vertices cluster into community groups. We define a null model appropriate for bipartite networks, and use it to define a bipartite modularity. The bipartite modularity is presented in terms of a modularity matrix B; some key properties of the eigenspectrum of B are identified and used to describe an algorithm for identifying modules in bipartite networks. The algorithm is based on t...
February 10, 2015
We study random graphs with possibly different edge probabilities in the challenging sparse regime of bounded expected degrees. Unlike in the dense case, neither the graph adjacency matrix nor its Laplacian concentrate around their expectations due to the highly irregular distribution of node degrees. It has been empirically observed that simply adding a constant of order $1/n$ to each entry of the adjacency matrix substantially improves the behavior of Laplacian. Here we pro...