October 16, 2016
We give an overview of combinatoric properties of the number of ordered $k$-factorizations $f_k(n,l)$ of an integer, where every factor is greater or equal to $l$. We show that for a large number $k$ of factors, the value of the cumulative sum $F_k(x,l)=\sum\nolimits_{n\leq x} f_k(n,l)$ is a polynomial in $\lfloor \log_l x \rfloor$ and give explicit expressions for the degree and the coefficients of this polynomial. An average order of the number of ordered factorizations for a fixed number $k$ of factors greater or equal to 2 is derived from known results of the divisor problem.
Similar papers 1
August 23, 2020
We study the number of factorizations of a positive integer, where the parts of the factorization are of l different colors (or kinds). Recursive or explicit formulas are derived for the case of unordered and ordered, distinct and non-distinct factorizations with at most and exactly l colors.
February 1, 2021
Let $f(n)$ and $g(n)$ be the number of unordered and ordered factorizations of $n$ into integers larger than one. Let $F(n)$ and $G(n)$ have the additional restriction that the factors are coprime. We establish the asymptotic bounds for the sums of $F(n)^{\beta}$ and $G(n)^{\beta}$ up to $x$ for all real $\beta$ and the asymptotic bounds for $f(n)^{\beta}$ and $g(n)^{\beta}$ for all negative $\beta$.
December 1, 2014
As a well-known enumerative problem, the number of solutions of the equation $m=m_1+...+m_k$ with $m_1\leqslant...\leqslant m_k$ in positive integers is $\Pi(m,k)=\sum_{i=0}^k\Pi(m-k,i)$ and $\Pi$ is called the additive partition function. In this paper, we give a recursive formula for the so-called multiplicative partition function $\mu_1(m,k):=$ the number of solutions of the equation $m=m_1... m_k$ with $m_1\leqslant...\leqslant m_k$ in positive integers. In particular, us...
November 21, 2008
In this note we describe a new method of counting the number of unordered factorizations of a natural number by means of a generating function and a recurrence relation arising from it, which improves an earlier result in this direction.
September 27, 2016
Let $f(n)$ denote the number of unordered factorizations of a positive integer $n$ into factors larger than $1$. We show that the number of distinct values of $f(n)$, less than or equal to $x$, is at most $\exp \left( C \sqrt{\frac{\log x}{\log \log x}} \left( 1 + o(1) \right) \right)$, where $C=2\pi\sqrt{2/3}$ and $x$ is sufficiently large. This improves upon a previous result of the first author and F. Luca.
March 11, 2012
A classic question in analytic number theory is to find asymptotics for $\sigma_{k}(x)$ and $\pi_{k}(x)$, the number of integers $n\leq x$ with exactly $k$ prime factors, where $\pi_{k}(x)$ has the added constraint that all the factors are distinct. This problem was originally resolved by Landau in 1900, and much work was subsequently done where $k$ is allowed to vary. In this paper we look at a similar question about integers with a specific prime factorization. Given $\bold...
May 17, 2005
Let m(n) be the number of ordered factorizations of n in factors larger than 1. We prove that for every eps>0 n^{rho} m(n) < exp[(log n)^{1/rho}/(loglog n)^{1+eps}] holds for all integers n>n_0, while, for a constant c>0, n^{rho} m(n) > exp[c(log n)^{1/\rho}/(loglog n)^{1/rho}] holds for infinitely many positive integers n, where rho=1.72864... is the real solution to zeta(rho)=2. We investigate also arithmetic properties of m(n) and the number of distinct values of m(n).
April 7, 2020
Motivated by coding applications,two enumeration problems are considered: the number of distinct divisors of a degree-m polynomial over F = GF(q), and the number of ways a polynomial can be written as a product of two polynomials of degree at most n over F. For the two problems, bounds are obtained on the maximum number of factorizations, and a characterization is presented for polynomials attaining that maximum. Finally, expressions are presented for the average and the vari...
July 18, 2023
We recently introduced the recursive divisor function $\kappa_x(n)$, a recursive analogue of the usual divisor function. Here we calculate its Dirichlet series, which is ${\zeta(s-x)}/(2 - \zeta(s))$. We show that $\kappa_x(n)$ is related to the ordinary divisor function by $\kappa_x * \sigma_y = \kappa_y * \sigma_x$, where * denotes the Dirichlet convolution. Using this, we derive several identities relating $\kappa_x$ and some standard arithmetic functions. We also clarify ...
The number of ordered factorizations and the number of recursive divisors are two related arithmetic functions that are recursively defined. But it is hard to construct explicit representations of these functions. Taking advantage of their recursive definition and a geometric interpretation, we derive three closed-form expressions for them both. These expressions shed light on the structure of these functions and their number-theoretic properties. Surprisingly, both functions...