October 29, 2016
Similar papers 5
October 29, 2009
We use non-equilibrium dynamical mean-field theory in combination with a recently developed Quantum Monte Carlo impurity solver to study the real-time dynamics of a Hubbard model which is driven out of equilibrium by a sudden increase in the on-site repulsion U. We discuss the implementation of the self-consistency procedure and some important technical improvements of the QMC method. The exact numerical solution is compared to iterated perturbation theory, which is found to ...
April 25, 2019
We analyze the time-dependent formation of the spectral function of an Anderson impurity model in the Kondo regime within a numerically exact real-time quantum Monte Carlo framework. At steady state, splitting of the Kondo peak occurs with nontrivial dependence on voltage and temperature, and with little effect on the location or intensity of high-energy features. Examining the transient development of the Kondo peak after a quench from an initially uncorrelated state reveals...
November 18, 2022
We introduce an efficient method to simulate dynamics of an interacting quantum impurity coupled to non-interacting fermionic reservoirs. Viewing the impurity as an open quantum system, we describe the reservoirs by their Feynman-Vernon influence functionals (IF). The IF are represented as matrix-product states in the temporal domain, which enables an efficient computation of dynamics for arbitrary interactions. We apply our method to study quantum quenches and transport in a...
March 27, 2019
We propose a systematic approach to the non-equilibrium dynamics of strongly interacting many-body quantum systems, building upon the standard perturbative expansion in the Coulomb interaction. High order series are derived from the Keldysh version of determinantal diagrammatic Quantum Monte Carlo, and the reconstruction beyond the weak coupling regime of physical quantities is obtained by considering them as analytic functions of a complex-valued interaction $U$. Our advance...
December 21, 2005
We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wave function based description of the central region of the junction combined with a tight binding approximation for the electrodes in the frame of the Keldysh Green's function formalism. In addition we present an extension so as to include effects of the two-particle propagator. Our procedure is demonstrated for a dithiolbenzene molecule between ...
September 19, 2006
Impurity solvers play an essential role in the numerical investigation of strongly correlated electrons systems within the "dynamical mean field" approximation. Recently, a new class of continuous-time solvers has been developed, based on a diagrammatic expansion of the partition function in either the interactions or the impurity-bath hybridization. We investigate the performance of these two complementary approaches and compare them to the well-established Hirsch-Fye method...
April 8, 2024
The path integral formalism is the building block of many powerful numerical methods for quantum impurity problems. However, existing path integral based numerical calculations have only been performed in either the imaginary-time or the real-time axis, while the most generic scenario formulated on the L-shaped Kadanoff-Baym contour is left unexplored. In this work, we extended the recently developed Grassmann time-evolving matrix product operator (GTEMPO) method to solve qua...
August 18, 2004
The electric conductance of a molecular junction is calculated by recasting the Keldysh formalism in Liouville space. Dyson equations for nonequilibrium many body Green's functions (NEGF) are derived directly in real (physical) time. The various NEGFs appear naturally in the theory as time ordered products of superoperators, while the Keldysh forward/backward time loop is avoided.
October 16, 2020
We present ComCTQMC, a GPU accelerated quantum impurity solver. It uses the continuous-time quantum Monte Carlo (CTQMC) algorithm wherein the partition function is expanded in terms of the hybridisation function (CT-HYB). ComCTQMC supports both partition and worm-space measurements, and it uses improved estimators and the reduced density matrix to improve observable measurements whenever possible. ComCTQMC efficiently measures all one and two-particle Green's functions, all s...
July 5, 2005
We use the non-equilibrium Green's function formalism along with a self-consistent Hartree-Fock approximation to numerically study the effects of a single impurity and interactions between the electrons (with and without spin) on the conductance of a quantum wire. We study how the conductance varies with the wire length, the temperature, and the strength of the impurity and interactions. The dependence of the conductance on the wire length and temperature is found to be in ro...