November 6, 2016
Similar papers 4
September 5, 2023
Composites with high strength and high fracture resistance are desirable for structural and protective applications. Most composites, however, suffer from poor damage tolerance and are prone to unpredictable fractures. Understanding the behavior of materials with an irregular reinforcement phase offers fundamental guidelines for tailoring their performance. Here, we study the fracture nucleation and propagation in two phase composites, as a function of the topology of their i...
November 27, 2018
Nature provides examples of self-assemble lightweight disordered network structures with remarkable mechanical properties which are desirable for many applications purposes but challenging to reproduce artificially. Previous experimental and computational studies investigated the mechanical responses of random network structures focusing on topological and geometrical aspects in terms of variable connectivity or probability to place beam elements. However for practical purpos...
May 12, 2023
We propose a new conceptual approach to reach unattained dissipative properties based on the friction of slender concentric sliding columns. We begin by searching for the optimal topology in the simplest telescopic system of two concentric columns. Interestingly, we obtain that the optimal shape parameters are material independent and scale invariant. Based on a multiscale self-similar reconstruction, we end-up with a theoretical optimal fractal limit system whose cross secti...
January 13, 2024
The rise of soft materials and additive manufacturing has provided the feasibility of developing elastomer lattices for various engineering applications. Although earlier attempts have been made to manufacture and test the elastomer lattices, a comprehensive understanding of their fracture behaviour has remained elusive. Inspired by the soft foams in mussel plaque core, the present study introduces the concept of soft, ductile, and tough elastomer lattices. Uniaxial and plana...
December 17, 2013
The principle of hierarchical design is a prominent theme in many natural systems where mechanical efficiency is of importance. Here we establish the properties of a particular hierarchical structure, showing that high mechanical efficiency is found in certain loading regimes. We show that in the limit of gentle loading, the optimal hierarchical order increases without bound. We show that the scaling of material required for stability against loading to be withstood can be al...
February 4, 2017
Brittle materials fail catastrophically. In consequence of their limited flaw-tolerance, failure occurs by localized fracture and is typically a dynamic process. Recently, experiments on epithelial cell monolayers have revealed that this scenario can be significantly modified when the material susceptible to cracking is adhered to a hydrogel substrate. Thanks to the hydraulic coupling between the brittle layer and the poroelastic substrate, such a composite can develop a toug...
April 17, 2019
Recently, it has been found experimentally that hydrated nacre exhibits a nonlinear mechanical response. While mechanical nonlinearity has been shown to be important in other biological structures, such as spider webs, the implications of mechanical nonlinearity in nacre have not been explored. Here, we show that the nonlinear mechanical response of nacre can be reproduced by an analytical model, which reflects a nacre-like layered structure, consisting of linear-elastic hard...
June 30, 2015
High strength and high toughness are usually mutually exclusive in engineering materials. Improving the toughness of strong but brittle materials like ceramics thus relies on the introduction of a metallic or polymeric ductile phase to dissipate energy, which conversely decreases the strength, stiffness, and the ability to operate at high temperature. In many natural materials, toughness is achieved through a combination of multiple mechanisms operating at different length sc...
May 15, 2018
Fracture toughness $K_{IC}$ plays an important role in materials design. Along with numerous experimental methods to measure fracture toughness of materials, its understanding and theoretical prediction is very important. However, theoretical prediction of fracture toughness is challenging. By investigating the correlation between fracture toughness and elastic properties of materials, we have constructed a fracture toughness model for covalent and ionic crystals. Furthermore...
October 21, 2019
We examine the atomistic scale dependence of material's resistance-to-failure by numerical simulations and analytical analysis in electrical analogs of brittle crystals. We show that fracture toughness depends on the lattice geometry in a way incompatible with Griffith's relationship between fracture and free surface energy. Its value finds its origin in the matching between the continuum displacement field at the engineering scale, and the discrete nature of solids at the at...