November 7, 2016
Similar papers 5
December 1, 2021
Memristive systems and devices are potentially available for implementing reservoir computing (RC) systems applied to pattern recognition. However, the computational ability of memristive RC systems depends on intertwined factors such as system architectures and physical properties of memristive elements, which complicates identifying the key factor for system performance. Here we develop a simulation platform for RC with memristor device networks, which enables testing diffe...
February 27, 2013
Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments ...
August 14, 2018
It is shown that the time-averaged dynamics of memristors and their networks periodically driven by alternating-polarity pulses may converge to fixed-point attractors. Starting with a general memristive system model, we derive basic equations describing the fixed-point attractors and investigate attractors in the dynamics of ideal, threshold-type and second-order memristors, and memristive networks. A memristor potential function is introduced, and it is shown that in some ca...
August 21, 2022
The advent of deep learning has resulted in a number of applications which have transformed the landscape of the research area in which it has been applied. However, with an increase in popularity, the complexity of classical deep neural networks has increased over the years. As a result, this has leads to considerable problems during deployment on devices with space and time constraints. In this work, we perform a review of the present advancements in non-volatile memory and...
February 17, 2014
Memristors have been suggested as neuromorphic computing elements. Spike-time dependent plasticity and the Hodgkin-Huxley model of the neuron have both been modelled effectively by memristor theory. The d.c. response of the memristor is a current spike. Based on these three facts we suggest that memristors are well-placed to interface directly with neurons. In this paper we show that connecting a spiking memristor network to spiking neuronal cells causes a change in the memri...
March 11, 2024
Memristive devices hold promise to improve the scale and efficiency of machine learning and neuromorphic hardware, thanks to their compact size, low power consumption, and the ability to perform matrix multiplications in constant time. However, on-chip training with memristor arrays still faces challenges, including device-to-device and cycle-to-cycle variations, switching non-linearity, and especially SET and RESET asymmetry. To combat device non-linearity and asymmetry, we ...
April 30, 2020
Machine learning, particularly in the form of deep learning, has driven most of the recent fundamental developments in artificial intelligence. Deep learning is based on computational models that are, to a certain extent, bio-inspired, as they rely on networks of connected simple computing units operating in parallel. Deep learning has been successfully applied in areas such as object/pattern recognition, speech and natural language processing, self-driving vehicles, intellig...
August 20, 2010
It is now widely accepted that memristive devices are perfect candidates for the emulation of biological synapses in neuromorphic systems. This is mainly because of the fact that like the strength of synapse, memristance of the memristive device can be tuned actively (e.g., by the application of volt- age or current). In addition, it is also possible to fabricate very high density of memristive devices (comparable to the number of synapses in real biological system) through t...
January 24, 2011
We suggest and experimentally demonstrate a chaotic memory resistor (memristor). The core of our approach is to use a resistive system whose equations of motion for its internal state variables are similar to those describing a particle in a multi-well potential. Using a memristor emulator, the chaotic memristor is realized and its chaotic properties are measured. A Poincar\'{e} plot showing chaos is presented for a simple nonautonomous circuit involving only a voltage source...
October 14, 2014
We show theoretically that networks of membrane memcapacitive systems -- capacitors with memory made out of membrane materials -- can be used to perform a complete set of logic gates in a massively parallel way by simply changing the external input amplitudes, but not the topology of the network. This polymorphism is an important characteristic of memcomputing (computing with memories) that closely reproduces one of the main features of the brain. A practical realization of t...