January 5, 2021
These brief lecture notes cover the basics of neural networks and deep learning as well as their applications in the quantum domain, for physicists without prior knowledge. In the first part, we describe training using backpropagation, image classification, convolutional networks and autoencoders. The second part is about advanced techniques like reinforcement learning (for discovering control strategies), recurrent neural networks (for analyzing time traces), and Boltzmann m...
January 26, 2019
Deep learning is a modern approach to realize artificial intelligence. Many frameworks exist to implement the machine learning task; however, performance is limited by computing resources. Using a quantum computer to accelerate training is a promising approach. The variational quantum circuit (VQC) has gained a great deal of attention because it can be run on near-term quantum computers. In this paper, we establish a new framework that merges traditional machine learning task...
July 20, 2016
We show how to train a quantum network of pairwise interacting qubits such that its evolution implements a target quantum algorithm into a given network subset. Our strategy is inspired by supervised learning and is designed to help the physical construction of a quantum computer which operates with minimal external classical control.
December 1, 2015
For the past two decades, researchers have attempted to create a Quantum Neural Network (QNN) by combining the merits of quantum computing and neural computing. In order to exploit the advantages of the two prolific fields, the QNN must meet the non-trivial task of integrating the unitary dynamics of quantum computing and the dissipative dynamics of neural computing. At the core of quantum computing and neural computing lies the qubit and perceptron, respectively. We see that...
August 29, 2014
With the overwhelming success in the field of quantum information in the last decades, the "quest" for a Quantum Neural Network (QNN) model began in order to combine quantum computing with the striking properties of neural computing. This article presents a systematic approach to QNN research, which so far consists of a conglomeration of ideas and proposals. It outlines the challenge of combining the nonlinear, dissipative dynamics of neural computing and the linear, unitary ...
January 19, 2023
Recurrent neural networks play an important role in both research and industry. With the advent of quantum machine learning, the quantisation of recurrent neural networks has become recently relevant. We propose fully quantum recurrent neural networks, based on dissipative quantum neural networks, capable of learning general causal quantum automata. A quantum training algorithm is proposed and classical simulations for the case of product outputs with the fidelity as cost fun...
December 10, 2014
In recent years, deep learning has had a profound impact on machine learning and artificial intelligence. At the same time, algorithms for quantum computers have been shown to efficiently solve some problems that are intractable on conventional, classical computers. We show that quantum computing not only reduces the time required to train a deep restricted Boltzmann machine, but also provides a richer and more comprehensive framework for deep learning than classical computin...
November 6, 2018
Artificial neural networks are the heart of machine learning algorithms and artificial intelligence protocols. Historically, the simplest implementation of an artificial neuron traces back to the classical Rosenblatt's `perceptron', but its long term practical applications may be hindered by the fast scaling up of computational complexity, especially relevant for the training of multilayered perceptron networks. Here we introduce a quantum information-based algorithm implemen...
March 20, 2019
As a ubiquitous aspect of modern information technology, data compression has a wide range of applications. Therefore, a quantum autoencoder which can compress quantum information into a low-dimensional space is fundamentally important to achieve automatic data compression in the field of quantum information. Such a quantum autoencoder can be implemented through training the parameters of a quantum device using classical optimization algorithms. In this article, we analyze th...
July 20, 2021
Given the success of deep learning in classical machine learning, quantum algorithms for traditional neural network architectures may provide one of the most promising settings for quantum machine learning. Considering a fully-connected feedforward neural network, we show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems. We propose a quantum algorithm to approximately train a w...