April 13, 2017
We define "BPS graphs" on punctured Riemann surfaces associated with $A_{N-1}$ theories of class $\mathcal{S}$. BPS graphs provide a bridge between two powerful frameworks for studying the spectrum of BPS states: spectral networks and BPS quivers. They arise from degenerate spectral networks at maximal intersections of walls of marginal stability on the Coulomb branch. While the BPS spectrum is ill-defined at such intersections, a BPS graph captures a useful basis of elementary BPS states. The topology of a BPS graph encodes a BPS quiver, even for higher-rank theories and for theories with certain partial punctures. BPS graphs lead to a geometric realization of the combinatorics of Fock-Goncharov $N$-triangulations and generalize them in several ways.
Similar papers 1
October 23, 2017
I present a simple graphical method to find the BPS spectra of $A_1$ theories of class S. BPS graphs provide a bridge between spectral networks and BPS quivers, the two main frameworks for the study of BPS states. Here I show how to essentially read off from a BPS graph the quantum spectrum generator (or BPS monodromy), expressed as a product of quantum dilogarithms. Thanks to the framed wall-crossing phenomenon for line defects, the determination of the BPS spectrum reduces ...
January 11, 2016
We introduce a new perspective and a generalization of spectral networks for 4d $\mathcal{N}=2$ theories of class $\mathcal{S}$ associated to Lie algebras $\mathfrak{g} = \textrm{A}_n$, $\textrm{D}_n$, $\textrm{E}_{6}$, and $\textrm{E}_{7}$. Spectral networks directly compute the BPS spectra of 2d theories on surface defects coupled to the 4d theories. A Lie algebraic interpretation of these spectra emerges naturally from our construction, leading to a new description of 2d-4...
November 1, 2016
A new construction of BPS monodromies for 4d ${\mathcal N}=2$ theories of class S is introduced. A novel feature of this construction is its manifest invariance under Kontsevich-Soibelman wall crossing, in the sense that no information on the 4d BPS spectrum is employed. The BPS monodromy is encoded by topological data of a finite graph, embedded into the UV curve $C$ of the theory. The graph arises from a degenerate limit of spectral networks, constructed at maximal intersec...
September 22, 2011
We study the BPS spectra of N=2 complete quantum field theories in four dimensions. For examples that can be described by a pair of M5 branes on a punctured Riemann surface we explain how triangulations of the surface fix a BPS quiver and superpotential for the theory. The BPS spectrum can then be determined by solving the quantum mechanics problem encoded by the quiver. By analyzing the structure of this quantum mechanics we show that all asymptotically free examples, Argyre...
December 16, 2011
We explore the relationship between four-dimensional N=2 quantum field theories and their associated BPS quivers. For a wide class of theories including super-Yang-Mills theories, Argyres-Douglas models, and theories defined by M5-branes on punctured Riemann surfaces, there exists a quiver which implicitly characterizes the field theory. We study various aspects of this correspondence including the quiver interpretation of flavor symmetries, gauging, decoupling limits, and fi...
March 19, 2017
A large class of N=2 quantum field theories admits a BPS quiver description and the study of their BPS spectra is then reduced to a representation theory problem. In such theories the coupling to a line defect can be modelled by framed quivers. The associated spectral problem characterises the line defect completely. Framed BPS states can be thought of as BPS particles bound to the defect. We identify the framed BPS degeneracies with certain enumerative invariants associated ...
November 28, 2016
We study vacua and BPS spectra of canonical surface defects of class $\mathcal{S}$ theories in different decoupling limits using ADE spectral networks. In some regions of the IR moduli spaces of these 2d-4d systems, the mixing between 2d and 4d BPS states is suppressed, and the spectrum of 2d-4d BPS states becomes that of a 2d $\mathcal{N}=(2,2)$ theory. For some decoupling limits, we identify the 2d theories describing the surface defects with nonlinear sigma models and cose...
March 20, 2012
Combinatorial methods are developed to find the cluster coordinates for moduli space of flat connections which is describing the Coulomb branch of higher rank N=2 theories derived by compactifying six dimensional (2,0) theory on a punctured Riemann surface. The construction starts with a triangulation of the punctured Riemann surface and a further tessellation of all the triangles. The tessellation is used to construct a bipartite network from which a quiver can be read strai...
May 27, 2020
We introduce and explore the relation between quivers and 3-manifolds with the topology of the knot complement. This idea can be viewed as an adaptation of the knots-quivers correspondence to Gukov-Manolescu invariants of knot complements (also known as $F_K$ or $\hat{Z}$). Apart from assigning quivers to complements of $T^{(2,2p+1)}$ torus knots, we study the physical interpretation in terms of the BPS spectrum and general structure of 3d $\mathcal{N}=2$ theories associated ...
September 5, 2012
We apply and illustrate the techniques of spectral networks in a large collection of A_{K-1} theories of class S, which we call "lifted A_1 theories." Our construction makes contact with Fock and Goncharov's work on higher Teichmuller theory. In particular we show that the Darboux coordinates on moduli spaces of flat connections which come from certain special spectral networks coincide with the Fock-Goncharov coordinates. We show, moreover, how these techniques can be used t...