April 22, 2017
Similar papers 5
July 4, 2023
Multiplexed, real-time fluorescence detection at the single-molecule level is highly desirable to reveal the stoichiometry, dynamics, and interactions of individual molecular species within complex systems. However, traditionally fluorescence sensing is limited to 3-4 concurrently detected labels, due to low signal-to-noise, high spectral overlap between labels, and the need to avoid dissimilar dye chemistries. We have engineered a palette of several dozen fluorescent labels,...
February 28, 2023
Motility is an essential factor for an organism's survival and diversification. With the advent of novel single-cell technologies, analytical frameworks and theoretical methods, we can begin to probe the complex lives of microscopic motile organisms and answer the intertwining biological and physical questions of how these diverse lifeforms navigate their surroundings. Herein, we give an overview of different experimental, analytical, and mathematical methods used to study a ...
March 1, 2023
Single-molecule fluorescence techniques are essential for investigating the molecular mechanisms in biological processes. However, achieving sub-millisecond temporal resolution to monitor fast molecular dynamics remains a significant challenge. The fluorescence brightness is the key parameter that generally defines the temporal resolution for these techniques. Conventional microscopes and standard fluorescent emitters fall short in achieving the high brightness required for s...
December 7, 2021
Imaging individual conformational instances of generic, inhomogeneous, transient or intrinsically disordered protein systems at the single molecule level in situ is one of the notable challenges in structural biology. Present techniques access averaged structural information by measuring over large ensembles of proteins in nearly uniform conformational states in synthetic environments. This poses significant implications for diagnostics and drug design which require a detaile...
October 14, 2020
Proteins are the active working horses in our body. These biomolecules perform all vital cellular functions from DNA replication and general biosynthesis to metabolic signaling and environmental sensing. While static 3D structures are now readily available, observing the functional cycle of proteins - involving conformational changes and interactions - remains very challenging, e.g., due to ensemble averaging. However, time-resolved information is crucial to gain a mechanisti...
April 29, 2007
In this paper we review the applicability of autofluorescent proteins for single-molecule imaging in biology. The photophysical characteristics of several mutants of the Green Fluorescent Protein (GFP) and those of DsRed are compared and critically discussed for their use in cellular biology. The alternative use of two-photon excitation at the single-molecule level or Fluorescence Correlation Spectroscopy is envisaged for the study of individual autofluorescent proteins. Sing...
September 4, 2010
Background: The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM). The discussion is illustrated by the example of single-molecule fluorescence...
March 5, 2013
Single molecule tracking in live cells is the ultimate tool to study subcellular protein dynamics, but it is often limited by the probe size and photostability. Due to these issues, long-term tracking of proteins in confined and crowded environments, such as intracellular spaces, remains challenging. We have developed a novel optical probe consisting of 5-nm gold nanoparticles functionalized with a small fragment of camelid antibodies that recognize widely used GFPs with a ve...
June 4, 2020
Single-molecule F\"{o}rster resonance energy transfer (smFRET) has become a mainstream technique for probing biomolecular structural dynamics. The rapid and wide adoption of the technique by an ever-increasing number of groups has generated many improvements and variations in the technique itself, in methods for sample preparation and characterization, in analysis of the data from such experiments, and in analysis codes and algorithms. Recently, several labs that employ smFRE...
November 1, 2009
Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences,...