April 30, 2017
We simulate boron on Pb(110) surface by using ab initio evolutionary methodology. Interestingly, the two-dimensional (2D) Dirac Pmmn boron can be formed because of good lattice matching. Unexpectedly, by increasing the thickness of 2D boron, a three-bonded graphene-like structure (P2_1/c boron) was revealed to possess double anisotropic Dirac cones. It is 20 meV/atom lower in energy than the Pmmn structure, indicating the most stable 2D boron with particular Dirac cones. The puckered structure of P2_1/c boron results in the peculiar Dirac cones, as well as substantial mechanical anisotropy. The calculated Young's modulus is 320 GPa.nm along zigzag direction, which is comparable with graphene.
Similar papers 1
September 10, 2013
It has been widely accepted that planar boron structures, composed of triangular and hexagonal motifs are the most stable two dimensional (2D) phases and likely precursors for boron nanostructures. Here we predict, based on ab initio evolutionary structure search, novel 2D boron structure with non-zero thickness, which is considerably, by 50 meV/atom lower in energy than the recently proposed alpha-sheet structure and its analogues. In particular, this phase is identified for...
November 27, 2017
We introduce two-dimensional borane, a single-layered material of BH stoichiometry, with promising electronic properties. We show that, according to Density Functional Theory calculations, two-dimensional borane is semimetallic, with two symmetry-related Dirac cones meeting right at the Fermi energy $E_f$. The curvature of the cones is lower than in graphene, thus closer to the ideal linear dispersion. Its structure, formed by a puckered trigonal boron network with hydrogen a...
August 17, 2016
First-principles calculations on monolayer 8-{\it Pmmn} borophene are reported to reveal unprecedented electronic properties in a two-dimensional material. Based on a Born effective charge analysis, 8-{\it Pmmn} borophene is the first single-element based monolayered material exhibiting two sublattices with substantial ionic features. The observed Dirac cones are actually formed by the p$_z$ orbitals of one of the inequivalent sublattices composed of uniquely four atoms, yiel...
February 11, 2016
Recent synthesis of monolayer borophene (triangle boron monolayer) on the substrate opens the era of boron nanosheet (Science, 350, 1513, $\mathbf{2015}$), but the structural stability and novel physical properties are still open issues. Here we demonstrated borophene can be stabilized with fully surface hydrogenation, called as borophane, from first-principles calculations. Most interesting, it shows that borophane has direction-dependent Dirac cones, which are mainly contri...
August 31, 2019
Two-dimensional (2D) Dirac cone materials exhibit linear energy dispersion at the Fermi level, where the effective masses of carriers are very close to zero and the Fermi velocity is ultrahigh, only 2 ~ 3 orders of magnitude lower than the light velocity. Such the Dirac cone materials have great promise in high-performance electronic devices. Herein, we have employed the genetic algorithms methods combining with first-principles calculations to propose a new 2D anisotropic Di...
December 26, 2016
The enchanting Dirac fermions in graphene stimulated us to seek for other two-dimensional (2D) Dirac materials, and boron monolayers may be a good candidate. So far, a number of monolayer boron sheets have been theoretically predicted, and three have been experimentally prepared. However, none of them possesses Dirac electrons. Herein, by means of density functional theory (DFT) computations, we identified a new boron monolayer, namely hr-sB, with two types of Dirac fermions ...
February 2, 2017
Honeycomb structures of group IV elements can host massless Dirac fermions with non-trivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the \beta 12 boron sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the \beta 12...
February 9, 2023
Hydrogen, a simple and magic element, has attracted increasing attention for its effective incorporation within solids and powerful manipulation of electronic states. Here, we show that hydrogenation tackles common problems in two-dimensional borophene, e.g., stability and applicability. As a prominent example, a ladder-like boron hydride sheet, named as 2D ladder polyborane, achieves the desired outcome, enjoying the cleanest scenario with an anisotropic and tilted Dirac con...
December 2, 2013
Boron synthesis, in theory: Although two-dimensional boron sheets have attracted considerable interest because of their theoretically predicted properties, synthesis of such sheets remains a challenge. The feasibility of different synthetic methods for two-dimensional boron sheets was assessed using first-principles calculations, possibly paving the way towards its application in nanoelectronics.
July 28, 2016
Recently, two-dimensional boron sheets have attracted a lot of attentions owing to their structural polymorphs and outstanding properties. And, due to chemical complexity and electron deficiency of B atoms, the 2D boron sheets are easy affected by the environment. So, exploring novel 2D boron oxides gets highly needed. In this study, we theoretically explored 2D boron oxides structures and their basic properties. We found 2D boron oxides are metals or semimetals, when oxygen ...