June 3, 2013
The study of graphene, since its discovery around 2004, is possibly the largest and fastest growing field of research in material science, because of its exotic mechanical, thermal, electronic, optical and chemical properties. The studies of graphene have also led to further research in exploring the field of two dimensional (2D) systems in general. For instance, a number of other 2D crystals (not based on carbon, e.g., boronitrene, silicone, graphane, etc.) have been synthes...
October 31, 2018
Elementary semiconductors are rare and attractive, especially for low-dimensional materials. Unfortunately, most of boron nanostructures were found to be metallic, despite of their typical semiconducting bulk structure. Herein, we propose a general recipe to realize low-dimensional semiconducting boron. This unusual semiconducting behavior is attributed to charge transfer and electron localization, induced by the symmetry breaking that divides boron atoms into cations and ani...
February 7, 2019
A computation methodology based on ab initio evolutionary algorithms and the spin-polarized density functional theory was developed to predict two-dimensional (2D) magnetic materials. Its application to a model system borophene reveals an unexpected rich magnetism and polymorphism. A stable borophene with nonzero thickness was an antiferromagnetic (AFM) semiconductor from first-principles calculations, which can be further turned into a half metal by finite electron doping. I...
December 17, 2015
We predict a two-dimensional (2D) antiferromagnetic (AFM) boron (designated as M-boron) by using ab initio evolutionary methodology. M-boron is entirely composed of B20 clusters in a hexagonal arrangement. Most strikingly, the highest valence band of M-boron is isolated, strongly localized, and quite flat, which induces spin polarization on each cap of the B20 cluster. This flat band originates from the unpaired electrons of the capping atoms, and is responsible for magnetism...
June 16, 2022
Charge transfer from a metal substrate stabilizes honeycomb borophene, whose electron deficit would otherwise spoil the hexagonal order of a $\pi$-bonded 2D atomic network. However, the coupling between the substrate and the boron overlayer may result in the formation of strong chemical bonds that would compromise the electronic properties of the overlayer. In this paper we present a theoretical study, based on state-of-the-art density-functional and genetic-optimization tech...
June 25, 2012
Effect of doping of graphene either by Boron (B), Nitrogen (N) or co-doped by B and N is studied using density functional theory. Our extensive band structure and density of states calculations indicate that upon doping by N (electron doping), the Dirac point in the graphene band structure shifts below the Fermi level and an energy gap appears at the high symmetric K-point. On the other hand, by B (hole doping), the Dirac point shifts above the Fermi level and a gap appears. ...
December 2, 2012
The doping of graphene to tune its electronic structure is essential for its further use in carbon based electronics. Adapting strategies from classical silicon based semiconductor technology, we use the incorporation of heteroatoms in the 2D graphene network as a straightforward way to achieve this goal. Here, we report on the synthesis of boron-doped graphene on Ni(111) in a chemical vapor deposition process of triethylborane on the one hand and by segregation of boron from...
May 8, 2018
Experimental realization of two-dimensional boron sheets was reported very recently by Feng et. al. using molecular beam epitaxy on silver (111) surface. These boron sheets possess promising electronic and transport properties. We performed the density functional theory (DFT) calculation to see the stability of two $\beta_{12}$ and $\chi$ polymorphs of boron under strain and further studied electronic and transport properties. We verified the directional dependency in electro...
November 7, 2012
A novel crystalline structure of hybrid monolayer hexagonal boron nitride (BN) and graphene is predicted by means of the first-principles calculations. This material can be derived via boron or nitrogen atoms substituted by carbon atoms evenly in the graphitic BN with vacancies. The corresponding structure is constructed from a BN hexagonal ring linking an additional carbon atom. The unit cell is composed of 7 atoms, 3 of which are boron atoms, 3 are nitrogen atoms, and one i...
February 7, 2018
Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB$_2$ is presented. Two-dimensional ZrB$_2$ is a mechanically stable d- and p-orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice ...