May 15, 2017
Similar papers 3
June 28, 2023
In recent years statistical physics has proven to be a valuable tool to probe into large dimensional inference problems such as the ones occurring in machine learning. Statistical physics provides analytical tools to study fundamental limitations in their solutions and proposes algorithms to solve individual instances. In these notes, based on the lectures by Marc M\'ezard in 2022 at the summer school in Les Houches, we will present a general framework that can be used in a l...
May 3, 2017
The main features of the statistical approach to inverse problems are described on the example of a linear model with additive noise. The approach does not use any Bayesian hypothesis regarding an unknown object; instead, the standard statistical requirements for the procedure for finding a desired object estimate are presented. In this way, it is possible to obtain stable and efficient inverse solutions in the framework of classical statistical theory. The exact representati...
June 19, 2017
The problem of estimating a random vector x from noisy linear measurements y = A x + w with unknown parameters on the distributions of x and w, which must also be learned, arises in a wide range of statistical learning and linear inverse problems. We show that a computationally simple iterative message-passing algorithm can provably obtain asymptotically consistent estimates in a certain high-dimensional large-system limit (LSL) under very general parameterizations. Previous ...
June 2, 2023
The inference of a large symmetric signal-matrix $\mathbf{S} \in \mathbb{R}^{N\times N}$ corrupted by additive Gaussian noise, is considered for two regimes of growth of the rank $M$ as a function of $N$. For sub-linear ranks $M=\Theta(N^\alpha)$ with $\alpha\in(0,1)$ the mutual information and minimum mean-square error (MMSE) are derived for two classes of signal-matrices: (a) $\mathbf{S}=\mathbf{X}\mathbf{X}^\intercal$ with entries of $\mathbf{X}\in\mathbb{R}^{N\times M}$ i...
August 27, 2014
We consider Bayesian linear inverse problems in infinite-dimensional separable Hilbert spaces, with a Gaussian prior measure and additive Gaussian noise model, and provide an extension of the concept of Bayesian D-optimality to the infinite-dimensional case. To this end, we derive the infinite-dimensional version of the expression for the Kullback-Leibler divergence from the posterior measure to the prior measure, which is subsequently used to derive the expression for the ex...
January 24, 2016
Low-rank matrices play a fundamental role in modeling and computational methods for signal processing and machine learning. In many applications where low-rank matrices arise, these matrices cannot be fully sampled or directly observed, and one encounters the problem of recovering the matrix given only incomplete and indirect observations. This paper provides an overview of modern techniques for exploiting low-rank structure to perform matrix recovery in these settings, provi...
September 26, 2019
In the era of big data, one of the key challenges is the development of novel optimization algorithms that can accommodate vast amounts of data while at the same time satisfying constraints and limitations of the problem under study. The need to solve optimization problems is ubiquitous in essentially all quantitative areas of human endeavor, including industry and science. In the last decade there has been a surge in the demand from practitioners, in fields such as machine l...
September 30, 2013
It has been over 200 years since Gauss's and Legendre's famous priority dispute on who discovered the method of least squares. Nevertheless, we argue that the normal equations are still relevant in many facets of modern statistics, particularly in the domain of high-dimensional inference. Even today, we are still learning new things about the law of large numbers, first described in Bernoulli's Ars Conjectandi 300 years ago, as it applies to high dimensional inference. The ot...
January 24, 2017
We consider the problem of reconstructing a signal from multi-layered (possibly) non-linear measurements. Using non-rigorous but standard methods from statistical physics we present the Multi-Layer Approximate Message Passing (ML-AMP) algorithm for computing marginal probabilities of the corresponding estimation problem and derive the associated state evolution equations to analyze its performance. We also give the expression of the asymptotic free energy and the minimal info...
May 22, 2017
We study Bayesian inference methods for solving linear inverse problems, focusing on hierarchical formulations where the prior or the likelihood function depend on unspecified hyperparameters. In practice, these hyperparameters are often determined via an empirical Bayesian method that maximizes the marginal likelihood function, i.e., the probability density of the data conditional on the hyperparameters. Evaluating the marginal likelihood, however, is computationally challen...