ID: 1705.06581

Products of Differences over Arbitrary Finite Fields

May 18, 2017

View on ArXiv

Similar papers 3

On Products of Shifts in Arbitrary Fields

December 5, 2018

85% Match
Audie Warren
Combinatorics
Number Theory

We adapt the approach of Rudnev, Shakan, and Shkredov to prove that in an arbitrary field $\mathbb{F}$, for all $A \subset \mathbb{F}$ finite with $|A| < p^{1/4}$ if $p:= Char(\mathbb{F})$ is positive, we have $$|A(A+1)| \gtrsim |A|^{11/9}, \qquad |AA| + |(A+1)(A+1)| \gtrsim |A|^{11/9}.$$ This improves upon the exponent of $6/5$ given by an incidence theorem of Stevens and de Zeeuw.

Find SimilarView on arXiv

A sum-product theorem in function fields

November 23, 2012

85% Match
Thomas Bloom, Timothy G. F. Jones
Number Theory
Combinatorics

Let $A$ be a finite subset of $\ffield$, the field of Laurent series in $1/t$ over a finite field $\mathbb{F}_q$. We show that for any $\epsilon>0$ there exists a constant $C$ dependent only on $\epsilon$ and $q$ such that $\max\{|A+A|,|AA|\}\geq C |A|^{6/5-\epsilon}$. In particular such a result is obtained for the rational function field $\mathbb{F}_q(t)$. Identical results are also obtained for finite subsets of the $p$-adic field $\mathbb{Q}_p$ for any prime $p$.

Find SimilarView on arXiv

Sum-product estimates in finite fields

September 15, 2006

85% Match
D. Hart, A. Iosevich, J. Solymosi
Combinatorics
Classical Analysis and ODEs

We prove, using combinatorics and Kloosterman sum technology that if $A \subset {\Bbb F}_q$, a finite field with $q$ elements, and $q^{{1/2}} \lesssim |A| \lesssim q^{{7/10}}$, then $\max \{|A+A|, |A \cdot A|\} \gtrsim \frac{{|A|}^{{3/2}}}{q^{{1/4}}$.

Find SimilarView on arXiv

Sum-Product Type Estimates over Finite Fields

March 19, 2019

85% Match
Esen Aksoy Yazici
Combinatorics
Classical Analysis and ODEs
Number Theory

Let $\mathbb{F}_q$ denote the finite field with $q$ elements where $q=p^l$ is a prime power. Using Fourier analytic tools with a third moment method, we obtain sum-product type estimates for subsets of $\mathbb{F}_q$. In particular, we prove that if $A\subset \mathbb{F}_q$, then $$|AA+A|,|A(A+A)|\gg\min\left\{q, \frac{|A|^2}{q^{\frac{1}{2}}} \right\},$$ so that if $A\ge q^{\frac{3}{4}}$, then $|AA+A|,|A(A+A)|\gg q$.

Find SimilarView on arXiv

Differences of subgroups in subgroups

August 16, 2015

85% Match
Ilya D. Shkredov
Number Theory
Combinatorics

We prove, in particular, that if A,G are two arbitrary multiplicative subgroups of the prime field f_p, |G| < p^{3/4} such that the difference A-A is contained in G then |A| \ll |\G|^{1/3+o(1)}. Also, we obtain that for any eps>0 and a sufficiently large subgroup G with |G| \ll p^{1/2-eps} there is no representation G as G = A+B, where A is another subgroup, and B is an arbitrary set, |A|,|B|>1. Finally, we study the number of collinear triples containing in a set of f_p and ...

Find SimilarView on arXiv

Product of sets on varieties in finite fields

August 9, 2022

85% Match
Che-Jui Chang, Ali Mohammadi, ... , Shen Chun-Yen
Number Theory

Let $V$ be a variety in $\mathbb{F}_q^d$ and $E\subset V$. It is known that if any line passing through the origin contains a bounded number of points from $E$, then $|\prod(E)|=|\{x\cdot y\colon x, y\in E\}|\gg q$ whenever $|E|\gg q^{\frac{d}{2}}$. In this paper, we show that the barrier $\frac{d}{2}$ can be broken when $V$ is a paraboloid in some specific dimensions. The main novelty in our approach is to link this question to the distance problem in one lower dimensional v...

Find SimilarView on arXiv

Product Sets of Arithmetic Progressions in Function Fields

September 10, 2023

85% Match
Lior Bary-Soroker, Noam Goldgraber
Number Theory

We study product sets of finite arithmetic progressions of polynomials over a finite field. We prove a lower bound for the size of the product set, uniform in a wide range of parameters. We apply our results to resolve the function field variants of Erd\H{o}s' multiplication table problem.

Find SimilarView on arXiv

Small Sets with Large Difference Sets

May 24, 2017

85% Match
Luka Milicevic
Combinatorics

For every $\epsilon > 0$ and $k \in \mathbb{N}$, Haight constructed a set $A \subset \mathbb{Z}_N$ ($\mathbb{Z}_N$ stands for the integers modulo $N$) for a suitable $N$, such that $A-A = \mathbb{Z}_N$ and $|kA| < \epsilon N$. Recently, Nathanson posed the problem of constructing sets $A \subset \mathbb{Z}_N$ for given polynomials $p$ and $q$, such that $p(A) = \mathbb{Z}_N$ and $|q(A)| < \epsilon N$, where $p(A)$ is the set $\{p(a_1, a_2, \dots, a_n)\phantom{.}\colon\phantom...

Find SimilarView on arXiv

Pinned distance sets, Wolff's exponent in finite fields and improved sum-product estimates

November 28, 2007

84% Match
Derrick Hart, Alex Iosevich
Classical Analysis and ODEs
Combinatorics

An analog of the Falconer distance problem in vector spaces over finite fields asks for the threshold $\alpha>0$ such that $|\Delta(E)| \gtrsim q$ whenever $|E| \gtrsim q^{\alpha}$, where $E \subset {\Bbb F}_q^d$, the $d$-dimensional vector space over a finite field with $q$ elements (not necessarily prime). Here $\Delta(E)=\{{(x_1-y_1)}^2+...+{(x_d-y_d)}^2: x,y \in E\}$. The second listed author and Misha Rudnev established the threshold $\frac{d+1}{2}$, and the authors of t...

Find SimilarView on arXiv

An explicit sum-product estimate in $\mathbb{F}_p$

February 26, 2007

84% Match
M. Z. Garaev
Number Theory

Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a non-empty subset of $\mathbb{F}_p.$ In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of $\max\{|A+A|, |AA|\}.$ In particular, our result implies that if $1<|A|\le p^{7/13}(\log p)^{-4/13},$ then $$ \max\{|A+A|, |AA|\}\gg \frac{|A|^{15/14}}{(\log|A|)^{2/7}} . $$

Find SimilarView on arXiv