October 31, 2013
The proportions of oxygen, carbon and major rock-forming elements (e.g. Mg, Fe, Si) determine a planet's dominant mineralogy. Variation in a planet's mineralogy subsequently affects planetary mantle dynamics as well as any deep water or carbon cycle. Through thermodynamic models and high pressure diamond anvil cell experiments, we demonstrate the oxidation potential of C is above that of Fe at all pressures and temperatures indicative of 0.1 - 2 Earth-mass planets. This means...
October 27, 2014
Carbon can exist as isolated dumbbell, one-dimensional (1D) chain, 2D plane, and 3D network in carbon solids or carbon-based compounds, which attributes to its rich chemical binding way, including sp-, sp2-, and sp3-hybridized bonds. Sp2 hybridizing carbon always captures special attention due to its unique physical and chemical property. Here, using evolutionary algorithm in conjunction with ab initio method, we found that under compression, dumbbell carbon in CaC2 can be po...
January 20, 2011
The distribution, recycling and storage of carbon in the Earth are of fundamental importance to understand the global carbon cycle between the deep Earth and near surface reservoirs. Degassing of CO2 at mid-ocean ridges may give information on the source region but the very low solubility of CO2 in tholeitic basalts has for consequence that near all Mid-Ocean Ridge Basalts glasses exsolve their CO2 rich vapor at shallow depth as they approach the ocean floor. Hence their CO2 ...
July 15, 2013
By employing $ab$ $initio$ molecular dynamics simulations at constant pressure, we investigated behavior of amorphous carbon dioxide between 0-100 GPa and 200-500 K and found several new amorphous forms. We focused on evolution of the high-pressure polymeric amorphous form known as a-carbonia on its way down to zero pressure, where it eventually converts into a molecular amorphous solid. During decompression, two nonmolecular amorphous forms with different proportion of three...
August 21, 2015
We have used density-functional-theory methods and the ab initio random structure searching (AIRSS) approach to predict stable structures and stoichiometries of mixtures of iron and oxygen at high pressures. Searching was performed for 12 different stoichiometries at pressures of 100, 350 and 500 GPa, which involved relaxing more than 32,000 structures. We find that Fe$_2$O$_3$ and FeO$_2$ are the only phases stable to decomposition at 100 GPa, while at 350 and 500 GPa severa...
August 7, 2024
Calcium carbonate plays a crucial role in the global carbon cycle, and its phase diagram has always been of significant scientific interest. In this study, we used molecular dynamics (MD) to investigate several structural phase transitions of calcium carbonate. Using the Raiteri potential model, we explored the structural transitions occurring at a constant pressure of 1 bar with temperatures ranging from 300 K to 2500 K, and at a constant temperature of 1600 K with pressures...
January 2, 2021
Mg2GeO4 is an analogue for the ultra-high pressure behavior of Mg2SiO4, so we have investigated magnesium germanate to 275 GPa and over 2000 K using a laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction and density functional theory (DFT) computations. The experimental results are consistent with a novel phase with disordered Mg and Ge, in which germanium adopts eight-fold coordination with oxygen: the cubic Th3P4- type structure. Simulations u...
July 7, 2021
Changes in atomic coordination numbers at high pressures are fundamental to condensed-matter physics because they initiate the emergence of unexpected structures and phenomena. Silicon is capable of forming eight-, nine-, and ten-coordinated structures under compression,in addition to the usual six-coordinated structures. The missing seven-coordinated silicon remains an open question, but here our theoretical study provides evidence for its existence at high pressures. A comb...
February 19, 2018
A thorough in situ characterization of materials at extreme conditions is challenging, and computational tools such as crystal structural search methods in combination with ab initio calculations are widely used to guide experiments by predicting the composition, structure, and properties of high-pressure compounds. However, such techniques are usually computationally expensive and not suitable for large-scale combinatorial exploration. On the other hand, data-driven computat...
November 5, 2018
Crystal structure prediction with theoretical methods is particularly challenging when unit cells with many atoms need to be considered. Here we employ a symmetry-driven structure search (SYDSS) method and combine it with density functional theory (DFT) to predict novel crystal structures at high pressure. We sample randomly from all 1,506 Wyckoff positions of the 230 space groups to generate a set of initial structures. During the subsequent structural relaxation with DFT, e...