August 12, 2017
Similar papers 4
January 20, 2021
Living systems operate in a critical dynamical regime -- between order and chaos -- where they are both resilient to perturbation, and flexible enough to evolve. To characterize such critical dynamics, the established 'structural theory' of criticality uses automata network connectivity and node bias (to be on or off) as tuning parameters. This parsimony in the number of parameters needed sometimes leads to uncertain predictions about the dynamical regime of both random and s...
August 28, 1997
This is the second paper of a series of two about the structural properties that influence the asymptotic dynamics of Random Boolean Networks. Here we study the functionally independent clusters in which the relevant elements, introduced and studied in our first paper, are subdivided. We show that the phase transition in Random Boolean Networks can also be described as a percolation transition. The statistical properties of the clusters of relevant elements (that we call modu...
February 24, 2015
Random boolean networks are a model of genetic regulatory networks that has proven able to describe experimental data in biology. They not only reproduce important phenomena in cell dynamics, but they are also extremely interesting from a theoretical viewpoint, since it is possible to tune their asymptotic behaviour from order to disorder. The usual approach characterizes network families as a whole, either by means of static or dynamic measures. We show here that a more deta...
December 16, 2015
Systems that exhibit complex behaviours are often found in a particular dynamical condition, poised between order and disorder. This observation is at the core of the so-called criticality hypothesis, which states that systems in a dynamical regime between order and disorder attain the highest level of computational capabilities and achieve an optimal trade-off between robustness and flexibility. Recent results in cellular and evolutionary biology, neuroscience and computer s...
March 21, 2005
The evaluation of the number of attractors in Kauffman networks by Samuelsson and Troein is generalized to critical networks with one input per node and to networks with two inputs per node and different probability distributions for update functions. A connection is made between the terms occurring in the calculation and between the more graphic concepts of frozen, nonfrozen and relevant nodes, and relevant components. Based on this understanding, a phenomenological argument...
April 4, 2005
A fundamental task in developmental biology is to identify the mechanisms which drive morphogenesis. In many cases, pattern formation is driven by the positional information determined by both the gradient of maternal factors and hard-wired mechanisms embedded in the genome. Alternative mechanisms of positional information that contribute to patterning are the influence of signals derived from surrounding tissues. In this paper, we show that the interplay of geometrical const...
October 22, 2004
The Kauffman model describes a system of randomly connected nodes with dynamics based on Boolean update functions. Though it is a simple model, it exhibits very complex behavior for "critical" parameter values at the boundary between a frozen and a disordered phase, and is therefore used for studies of real network problems. We prove here that the mean number and mean length of attractors in critical random Boolean networks with connectivity one both increase faster than any ...
May 30, 2006
The dynamic stability of the Boolean networks representing a model for the gene transcriptional regulation (Kauffman model) is studied by calculating analytically and numerically the Hamming distance between two evolving configurations. This turns out to behave in a universal way close to the phase boundary only for in-degree distributions with a finite second moment. In-degree distributions of the form $P_d(k)\sim k^{-\gamma}$ with $2<\gamma<3$, thus having a diverging secon...
August 31, 2017
In this paper I present some of the most representative biological models applied to robotics. In particular, this work represents a survey of some models inspired, or making use of concepts, by gene regulatory networks (GRNs): these networks describe the complex interactions that affect gene expression and, consequently, cell behaviour.
October 14, 2015
Gene regulatory network (GRN) modeling is a well-established theoretical framework for the study of cell-fate specification during developmental processes. Recently, dynamical models of GRNs have been taken as a basis for formalizing the metaphorical model of Waddington's epigenetic landscape, providing a natural extension for the general protocol of GRN modeling. In this contribution we present in a coherent framework a novel implementation of two previously proposed general...