November 28, 2021
In recent years, large-scale Bayesian learning draws a great deal of attention. However, in big-data era, the amount of data we face is growing much faster than our ability to deal with it. Fortunately, it is observed that large-scale datasets usually own rich internal structure and is somewhat redundant. In this paper, we attempt to simplify the Bayesian posterior via exploiting this structure. Specifically, we restrict our interest to the so-called well-clustered datasets a...
October 22, 2017
We derive a new Bayesian Information Criterion (BIC) by formulating the problem of estimating the number of clusters in an observed data set as maximization of the posterior probability of the candidate models. Given that some mild assumptions are satisfied, we provide a general BIC expression for a broad class of data distributions. This serves as a starting point when deriving the BIC for specific distributions. Along this line, we provide a closed-form BIC expression for m...
February 1, 2012
In this paper we propose a framework inspired by interacting particle physics and devised to perform clustering on multidimensional datasets. To this end, any given dataset is modeled as an interacting particle system, under the assumption that each element of the dataset corresponds to a different particle and that particle interactions are rendered through gaussian potentials. Moreover, the way particle interactions are evaluated depends on a parameter that controls the sha...
July 8, 2019
We consider mean-field models for data--clustering problems starting from a generalization of the bounded confidence model for opinion dynamics. The microscopic model includes information on the position as well as on additional features of the particles in order to develop specific clustering effects. The corresponding mean--field limit is derived and properties of the model are investigated analytically. In particular, the mean--field formulation allows the use of a random ...
December 13, 2017
Variational Bayes (VB) inference is one of the most important algorithms in machine learning and widely used in engineering and industry. However, VB is known to suffer from the problem of local optima. In this Letter, we generalize VB by using quantum mechanics, and propose a new algorithm, which we call quantum annealing variational Bayes (QAVB) inference. We then show that QAVB drastically improve the performance of VB by applying them to a clustering problem described by ...
February 14, 2019
Quantum Clustering is a powerful method to detect clusters in data with mixed density. However, it is very sensitive to a length parameter that is inherent to the Schr\"odinger equation. In addition, linking data points into clusters requires local estimates of covariance that are also controlled by length parameters. This raises the question of how to adjust the control parameters of the Schr\"odinger equation for optimal clustering. We propose a probabilistic framework that...
April 5, 2006
We present a novel approach to semi-supervised learning which is based on statistical physics. Most of the former work in the field of semi-supervised learning classifies the points by minimizing a certain energy function, which corresponds to a minimal k-way cut solution. In contrast to these methods, we estimate the distribution of classifications, instead of the sole minimal k-way cut, which yields more accurate and robust results. Our approach may be applied to all energy...
October 20, 2012
We construct a cross-entropy clustering (CEC) theory which finds the optimal number of clusters by automatically removing groups which carry no information. Moreover, our theory gives simple and efficient criterion to verify cluster validity. Although CEC can be build on an arbitrary family of densities, in the most important case of Gaussian CEC: {\em -- the division into clusters is affine invariant; -- the clustering will have the tendency to divide the data into ell...
December 24, 2014
This paper presents an information theoretic approach to the concept of intelligence in the computational sense. We introduce a probabilistic framework from which computational intelligence is shown to be an entropy minimizing process at the local level. Using this new scheme, we develop a simple data driven clustering example and discuss its applications.
January 16, 2013
The K-Mean and EM algorithms are popular in clustering and mixture modeling, due to their simplicity and ease of implementation. However, they have several significant limitations. Both coverage to a local optimum of their respective objective functions (ignoring the uncertainty in the model space), require the apriori specification of the number of classes/clsuters, and are inconsistent. In this work we overcome these limitations by using the Minimum Message Length (MML) pri...