September 3, 2017
Similar papers 3
October 20, 2022
Complex networks representing social interactions, brain activities, molecular structures have been studied widely to be able to understand and predict their characteristics as graphs. Models and algorithms for these networks are used in real-life applications, such as search engines, and recommender systems. In general, such networks are modelled by constructing a low-dimensional Euclidean embedding of the vertices of the network, where proximity of the vertices in the Eucli...
March 27, 2003
The characterization of large-scale structural organization of social networks is an important interdisciplinary problem. We show, by using scaling analysis and numerical computation, that the following factors are relevant for models of social networks: the correlation between friendship ties among people and the position of their social groups, as well as the correlation between the positions of different social groups to which a person belongs.
May 29, 2020
Ranking algorithms are pervasive in our increasingly digitized societies, with important real-world applications including recommender systems, search engines, and influencer marketing practices. From a network science perspective, network-based ranking algorithms solve fundamental problems related to the identification of vital nodes for the stability and dynamics of a complex system. Despite the ubiquitous and successful applications of these algorithms, we argue that our u...
October 4, 2016
Networks represent relationships between entities in many complex systems, spanning from online social interactions to biological cell development and brain connectivity. In many cases, relationships between entities are unambiguously known: are two users 'friends' in a social network? Do two researchers collaborate on a published paper? Do two road segments in a transportation system intersect? These are directly observable in the system in question. In most cases, relations...
August 26, 2020
We consider the problem of estimating a network's eigenvector centrality only from data on the nodes, with no information about network topology. Leveraging the versatility of graph filters to model network processes, data supported on the nodes is modeled as a graph signal obtained via the output of a graph filter applied to white noise. We seek to simplify the downstream task of centrality ranking by bypassing network topology inference methods and, instead, inferring the c...
February 1, 2022
Recovering global rankings from pairwise comparisons has wide applications from time synchronization to sports team ranking. Pairwise comparisons corresponding to matches in a competition can be construed as edges in a directed graph (digraph), whose nodes represent e.g. competitors with an unknown rank. In this paper, we introduce neural networks into the ranking recovery problem by proposing the so-called GNNRank, a trainable GNN-based framework with digraph embedding. More...
May 30, 2012
In empirical studies of friendship networks participants are typically asked, in interviews or questionnaires, to identify some or all of their close friends, resulting in a directed network in which friendships can, and often do, run in only one direction between a pair of individuals. Here we analyze a large collection of such networks representing friendships among students at US high and junior-high schools and show that the pattern of unreciprocated friendships is far fr...
June 6, 2013
Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest -- essential in determining reward or penalty -- is almost always an ambiguous task due to the incomplete nature of competition networks. Here we introduce ``Natural Ranking," a desi...
May 30, 2013
Finding talents, often among the people already hired, is an endemic challenge for organizations. The social networking revolution, with online tools like Linkedin, made possible to make explicit and accessible what we perceived, but not used, for thousands of years: the exact position and ranking of a person in a network of professional and personal connections. To search and mine where and how an employee is positioned on a global skill network will enable organizations to ...
April 26, 2017
Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep underst...