October 2, 2017
Two theoretically well-motivated gauge extensions of the standard model are $SU(3)_C \times SU(3)_L \times SU(3)_R$ and $SU(3)_q \times SU(3)_L \times SU(3)_l \times SU(3)_R$, where $SU(3)_q$ is the same as $SU(3)_C$ and $SU(3)_l$ is its color leptonic counterpart. Each as three variations, according to how $SU(3)_R$ is broken. It is shown here for the first time that a built-in dark $U(1)_D$ gauge symmetry exists in all six versions, and may be broken to discrete $Z_2$ dark parity. The available dark matter candidates in each case include fermions, scalars, as well as {\it vector gauge bosons}. This work points to the unity of matter with dark matter, the origin of which is not {\it ad hoc}.
Similar papers 1
December 25, 2017
An extra $SU(2)_D$ gauge factor is added to the well-known left-right extension of the standard model (SM) of quarks and leptons. Under $SU(2)_L \times SU(2)_R \times SU(2)_D$, two fermion bidoublets $(2,1,2)$ and $(1,2,2)$ are assumed. The resulting model has an automatic dark $U(1)$ symmetry, in the same way that the SM has automatic baryon and lepton $U(1)$ symmetries. Phenomenological implications are discussed, as well as the possible origin of this proposal.
October 4, 2021
Dark matter must be stabilized over the cosmological timescale, which demands the existence of a stabilizing symmetry, derived by a dark charge, $D$. The existence of this dark charge may affect the quantization of electric charge, which theoretically shifts the electric charge, thus the hypercharge to a novel gauge extension, $SU(3)_C\otimes SU(2)_L\otimes U(1)_Y\otimes U(1)_N$, where $N$ determines $D=T_3+N$, similar to $Q=T_3+Y$. New observation of this work is that the da...
July 4, 2016
In this work we study a classically scale-invariant extension of the Standard Model in which the dark matter and electroweak scales are generated through the Coleman-Weinberg mechanism. The extra $SU(3)_X$ gauge factor gets completely broken by the vacuum expectation values of two scalar triplets. Out of the eight resulting massive vector bosons the three lightest are stable due to an intrinsic $Z_2\times Z_2'$ discrete symmetry and can constitute dark matter candidates. We a...
May 28, 2021
Extending the well-known $SU(3)_C \times SU(3)_L \times SU(3)_R$ model of quarks and leptons to include a fourth $SU(3)_N$ gauge factor, a new realization is obtained, different from leptonic color, which contains a lepton/dark symmetry with the help of an input $Z_4$ symmetry. It is seen to encompass a previous extension of the standard model to $SU(2)_N$ lepton symmetry.
May 2, 2013
We show that the SU(3)_C X SU(3)_L X U(1)_X (3-3-1) model of strong and electroweak interactions can naturally accommodate an extra U(1)_N symmetry behaving as a gauge symmetry. Resulting theory based on SU(3)_C X SU(3)_L X U(1)_X X U(1)_N (3-3-1-1) gauge symmetry realizes B-L=-(2/\sqrt{3})T_8+N as a charge of SU(3)_L X U(1)_N. Consequently, a residual symmetry, W-parity, resulting from broken B-L in similarity to R-parity in supersymmetry is always conserved and may be unbro...
June 19, 2015
We propose an extension of the Standard Model in which baryon number is promoted to be part of a non-Abelian gauge symmetry at high energies. Specifically, we consider the gauge group SU(4) x SU(2)_L x U(1)_X, where the SU(4) unifies baryon number and color. This symmetry is spontaneously broken down to the Standard Model gauge group at a scale which can be as low as a few TeV. The SU(4) structure implies that each SM quark comes along with an uncolored quark partner, the lig...
July 15, 2010
If the standard model of particle interactions is extended to include a neutral SU(2)_N gauge factor, with SU(3)_C x SU(2)_L x U(1)_Y x SU(2)_N embedded in E_6 or [SU(3)]^3, a conserved generalized R parity may appear. As a result, we have the first example of a possible dark-matter candidate X_1 which is a non-Abelain vector boson. Using current data, its mass is predicted to be less than about 1 TeV. The associated Z' of this model, as well as some signatures of the Higgs s...
November 23, 2015
We analyze a recently proposed extension of the Standard Model based on the SU(4) x SU(2)_L x U(1)_X gauge group, in which baryon number is interpreted as the fourth color and dark matter emerges as a neutral partner of the ordinary quarks under SU(4). We show that under well-motivated minimal flavor-violating assumptions the particle spectrum contains a heavy dark matter candidate which is dominantly the partner of the right-handed top quark. Assuming a standard cosmology, t...
March 11, 2018
In any gauge extension of the standard model (SM) of quarks and leptons, there is a minimal set of fermion and scalar multiplets which encompasses all the particles and interactions of the SM. Included within this set, there may be a suitable dark-matter candidate. If not, one may still exist from the judicious addition of a simple fermion or scalar multiplet without any imposed symmetry. Some new examples of such predestined dark matter are discussed.
May 11, 2014
We discuss a new SU(3)_C X SU(3)_L X U(1)_X X U(1)_N (3-3-1-1) gauge model that overhauls the theoretical and phenomenological aspects of the known 3-3-1 models. Additionally, we sift the outcome of the 3-3-1-1 model from precise electroweak bounds to dark matter observables. The mass spectra of the scalar and gauge sectors are diagonalized when the scale of the 3-3-1-1 breaking is compatible to that of the ordinary 3-3-1 breaking. All the interactions of the gauge bosons wit...