November 30, 2017
Similar papers 5
February 9, 2024
Neuromorphic processors improve the efficiency of machine learning algorithms through the implementation of physical artificial neurons to perform computations. However, whilst efficient classical neuromorphic processors have been demonstrated in various forms, practical quantum neuromorphic platforms are still in the early stages of development. Here we propose a fixed optical network for photonic quantum reservoir computing that is enabled by photon number-resolved detectio...
December 15, 2013
Recently, with the rapid development of technology, there are a lot of applications require to achieve low-cost learning. However the computational power of classical artificial neural networks, they are not capable to provide low-cost learning. In contrast, quantum neural networks may be representing a good computational alternate to classical neural network approaches, based on the computational power of quantum bit (qubit) over the classical bit. In this paper we present a...
May 31, 2022
Neural networks are being used to improve the probing of the state spaces of many particle systems as approximations to wavefunctions and in order to avoid the recurring sign problem of quantum monte-carlo. One may ask whether the usual classical neural networks have some actual hidden quantum properties that make them such suitable tools for a highly coupled quantum problem. I discuss here what makes a system quantum and to what extent we can interpret a neural network as ha...
March 11, 2023
This article gives an overview and a perspective of recent theoretical proposals and their experimental implementations in the field of quantum machine learning. Without an aim to being exhaustive, the article reviews specific high-impact topics such as quantum reinforcement learning, quantum autoencoders, and quantum memristors, and their experimental realizations in the platforms of quantum photonics and superconducting circuits. The field of quantum machine learning could ...
April 9, 2024
Driven by the significant advantages offered by quantum computing, research in quantum machine learning has increased in recent years. While quantum speed-up has been demonstrated in some applications of quantum machine learning, a comprehensive understanding of its underlying mechanisms for improved performance remains elusive. Our study fills this gap by examining the expressibility of quantum circuits integrated within a convolutional neural network (CNN). Through numerica...
July 28, 2020
Artificial neural networks have been proposed as potential algorithms that could benefit from being implemented and run on quantum computers. In particular, they hold promise to greatly enhance Artificial Intelligence tasks, such as image elaboration or pattern recognition. The elementary building block of a neural network is an artificial neuron, i.e. a computational unit performing simple mathematical operations on a set of data in the form of an input vector. Here we show ...
December 4, 2016
We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e.\ unitary. (The classical networks we generalise are called feedforward, and have step-function activation functions.) The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstr...
December 29, 2019
In this paper, we introduce a quantum extension of classical DNN, QDNN. The QDNN consisting of quantum structured layers can uniformly approximate any continuous function and has more representation power than the classical DNN. It still keeps the advantages of the classical DNN such as the non-linear activation, the multi-layer structure, and the efficient backpropagation training algorithm. Moreover, the QDNN can be used on near-term noisy intermediate-scale quantum process...
January 4, 2023
Quantum machine learning is a rapidly growing field at the intersection of quantum technology and artificial intelligence. This review provides a two-fold overview of several key approaches that can offer advancements in both the development of quantum technologies and the power of artificial intelligence. Among these approaches are quantum-enhanced algorithms, which apply quantum software engineering to classical information processing to improve keystone machine learning so...
December 10, 2014
In recent years, deep learning has had a profound impact on machine learning and artificial intelligence. At the same time, algorithms for quantum computers have been shown to efficiently solve some problems that are intractable on conventional, classical computers. We show that quantum computing not only reduces the time required to train a deep restricted Boltzmann machine, but also provides a richer and more comprehensive framework for deep learning than classical computin...