December 18, 2017
Single molecule spectroscopy aims at unveiling often hidden but potentially very important contributions of single entities to a system's ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes the fundamental question of temporal evolution, or change, has thus far been inaccessible, resulting in a static picture of a dynamic world. Here, we finally resolve this dilemma by performing the first ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature we reveal their non-linear ultrafast response in an effective 3-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse-pair, providing spectral encoding with 25 fs temporal resolution. This experimental realisation of true single molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally in reach.
Similar papers 1
July 12, 2024
Single-molecule fluorescence spectroscopy is a powerful method that avoids ensemble averaging, but its temporal resolution is limited by the fluorescence lifetime to nanoseconds at most. At the ensemble level, two-dimensional spectroscopy provides insight into ultrafast femtosecond processes such as energy transfer and line broadening, even beyond the Fourier limit, by correlating pump and probe spectra. Here, we combine these two techniques and demonstrate 2D spectroscopy of...
September 17, 2015
The pioneering experiments of linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross section of materials is very small, usually macroscopic bulk samples and pulsed lasers are used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles or small atomic ensembles with millions of atoms. Experiments ...
October 19, 2011
Exploring the interaction of light and matter at the ultimate limit of single photons and single emitters is of great interest both from a fundamental point of view and for emerging applications in quantum engineering. However, the difficulty of generating single photons with specific wavelengths, bandwidths and brightness as well as the weak interaction probability of a single photon with an optical emitter pose a formidable challenge toward this goal. Here, we demonstrate a...
November 9, 2020
Ultra-fast and multi-dimensional spectroscopy gives a powerful looking glass into the dynamics of molecular systems. In particular two-dimensional electronic spectroscopy (2DES) provides a probe of coherence and the flow of energy within quantum systems which is not possible with more conventional techniques. While heterodyne-detected (HD) 2DES is increasingly common, more recently fluorescence-detected (FD) 2DES offers new opportunities, including single-molecule experiments...
November 2, 2008
We report on the excitation of single molecules via narrow zero-phonon transitions using short laser pulses. By monitoring the Stokes-shifted fluorescence, we studied the excited state population as a function of the delay time, laser intensity, and frequency detuning. A pi-pulse excitation was demonstrated with merely 500 photons, and 5 Rabi cycles were achieved at higher excitation powers. Our findings are in good agreement with theoretical calculations and provide a first ...
December 10, 2010
Quantum mechanical phenomena, such as electronic coherence and entanglement, play a key role in achieving the unrivalled efficiencies of light-energy conversion in natural photosynthetic light-harvesting complexes, and triggered the growing interest in the possibility of organic quantum computing. Since biological systems are intrinsically heterogeneous, clear relations between structural and quantum-mechanical properties can only be obtained by investigating individual assem...
November 30, 2023
We resolve the real-time electric field of a femtosecond third-order nonlinear optical signal in the molecular frame. The electric field emitted by the induced third-order polarization from impulsively pre-aligned gas-phase molecules at room temperature, in a degenerate four-wave mixing (DFWM) scheme, is measured using a spectral interferometry technique. We show that by measuring both the amplitude and phase of the emitted femtosecond pulse, information related to electronic...
February 20, 2014
The motion of chemical bonds within molecules can be observed in real time, in the form of vibrational wavepackets prepared and interrogated through ultrafast nonlinear spectroscopy. Such nonlinear optical measurements are commonly performed on large ensembles of molecules, and as such, are limited to the extent that ensemble coherence can be maintained. Here, we describe vibrational wavepacket motion on single molecules, recorded through time-resolved, surface-enhanced, cohe...
November 10, 2020
Isolating single molecules in the solid state has allowed fundamental experiments in basic and applied sciences. When cooled down to liquid helium temperature, certain molecules show transition lines, that are tens of megahertz wide, limited only by the excited state lifetime. The extreme flexibility in the synthesis of organic materials provides, at low costs, a wide palette of emission wavelengths and supporting matrices for such single chromophores. In the last decades, th...
June 10, 2016
We demonstrate with an experiment how molecules are a natural test-bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. By considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states, we demonstrate that the quantum Jarzynski equality is satisfied i...