April 11, 2018
We determine the order of magnitude of $\mathbb{E}|\sum_{n \leq x} f(n)|^{2q}$ up to factors of size $e^{O(q^2)}$, where $f(n)$ is a Steinhaus or Rademacher random multiplicative function, for all real $1 \leq q \leq \frac{c\log x}{\log\log x}$. In the Steinhaus case, we show that $\mathbb{E}|\sum_{n \leq x} f(n)|^{2q} = e^{O(q^2)} x^q (\frac{\log x}{q\log(2q)})^{(q-1)^2}$ on this whole range. In the Rademacher case, we find a transition in the behaviour of the moments when $q \approx (1+\sqrt{5})/2$, where the size starts to be dominated by "orthogonal" rather than "unitary" behaviour. We also deduce some consequences for the large deviations of $\sum_{n \leq x} f(n)$. The proofs use various tools, including hypercontractive inequalities, to connect $\mathbb{E}|\sum_{n \leq x} f(n)|^{2q}$ with the $q$-th moment of an Euler product integral. When $q$ is large, it is then fairly easy to analyse this integral. When $q$ is close to 1 the analysis seems to require subtler arguments, including Doob's $L^p$ maximal inequality for martingales.
Similar papers 1
March 20, 2017
We determine the order of magnitude of $\mathbb{E}|\sum_{n \leq x} f(n)|^{2q}$, where $f(n)$ is a Steinhaus or Rademacher random multiplicative function, and $0 \leq q \leq 1$. In the Steinhaus case, this is equivalent to determining the order of $\lim_{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} |\sum_{n \leq x} n^{-it}|^{2q} dt$. In particular, we find that $\mathbb{E}|\sum_{n \leq x} f(n)| \asymp \sqrt{x}/(\log\log x)^{1/4}$. This proves a conjecture of Helson that on...
October 15, 2024
We give a short review of recent progress on determining the order of magnitude of moments $\mathbb{E}|\sum_{n \leq x} f(n)|^{2q}$ of random multiplicative functions, and of closely related issues. We hope this can serve as a concise introduction to some of the ideas involved, for those who may not have too much background in the area.
December 31, 2020
We prove that if $f(n)$ is a Steinhaus or Rademacher random multiplicative function, there almost surely exist arbitrarily large values of $x$ for which $|\sum_{n \leq x} f(n)| \geq \sqrt{x} (\log\log x)^{1/4+o(1)}$. This is the first such bound that grows faster than $\sqrt{x}$, answering a question of Hal\'asz and proving a conjecture of Erd\H{o}s. It is plausible that the exponent $1/4$ is sharp in this problem. The proofs work by establishing a multivariate Gaussian app...
January 19, 2025
We prove that when $f$ is a Rademacher random multiplicative function for any $\epsilon>0$, then $\sum_{n \leqslant x}\frac{f(n)}{\sqrt{n}} \ll (\log\log(x))^{3/4+\epsilon}$ for almost all $f$. We also show that there exist arbitrarily large values of $x$ such that $\sum_{n \leqslant x}\frac{f(n)}{\sqrt{n}} \gg (\log\log(x))^{-1/2}$. This is different to what is found in the Steinhaus case, this time with the size of the Rademacher Euler product making the multiplicative chao...
May 20, 2021
Let $f$ be a Rademacher or a Steinhaus random multiplicative function. Let $\varepsilon>0$ small. We prove that, as $x\rightarrow +\infty$, we almost surely have $$\bigg|\sum_{\substack{n\leq x\\ P(n)>\sqrt{x}}}f(n)\bigg|\leq\sqrt{x}(\log\log x)^{1/4+\varepsilon},$$ where $P(n)$ stands for the largest prime factor of $n$. This gives an indication of the almost sure size of the largest fluctuations of $f$.
January 29, 2024
For $f$ a Rademacher or Steinhaus random multiplicative function, we prove that $$ \max_{\theta \in [0,1]} \frac{1}{\sqrt{N}} \Bigl| \sum_{n \leq N} f(n) \mathrm{e} (n \theta) \Bigr| \gg \sqrt{\log N} ,$$ asymptotically almost surely as $N \rightarrow \infty$. Furthermore, for $f$ a Steinhaus random multiplicative function, and any $\varepsilon > 0$, we prove the partial upper bound result $$ \max_{\theta \in [0,1]} \frac{1}{\sqrt{N}} \Bigl| \sum_{\substack{n \leq N \\ P(n) \...
November 24, 2014
We consider the random functions $S_N(z):=\sum_{n=1}^N z(n) $, where $z(n)$ is the completely multiplicative random function generated by independent Steinhaus variables $z(p)$. It is shown that ${\Bbb E} |S_N|\gg \sqrt{N}(\log N)^{-0.05616}$ and that $({\Bbb E} |S_N|^q)^{1/q}\gg_{q} \sqrt{N}(\log N)^{-0.07672}$ for all $q>0$.
December 31, 2020
For $X(n)$ a Rademacher or Steinhaus random multiplicative function, we consider the random polynomials $$ P_N(\theta) = \frac1{\sqrt{N}} \sum_{n\leq N} X(n) e(n\theta), $$ and show that the $2k$-th moments on the unit circle $$ \int_0^1 \big| P_N(\theta) \big|^{2k}\, d\theta $$ tend to Gaussian moments in the sense of mean-square convergence, uniformly for $k \ll (\log N / \log \log N)^{1/3}$, but that in contrast to the case of i.i.d. coefficients, this behavior does not pe...
August 28, 2024
Inspired in the papers by Angelo and Xu, Q.J Math., 74, pp. 767-777, and improvements by Kerr and Klurman, arXiv:2211.05540, we study the probability that the weighted sums of a Rademacher random multiplicative function, $\sum_{n\leq x}f(n)n^{-\sigma}$, are positive for all $x\geq x_\sigma\geq 1$ in the regime $\sigma\to1/2^+$. In a previous paper by the author, when $\sigma\leq 1/2$ this probability is zero. Here we give a positive lower bound for this probability depending ...
September 30, 2024
Let $V(x)$ be the number of sign changes of the partial sums up to $x$, say $M_f(x)$, of a Rademacher random multiplicative function $f$. We prove that the averaged value of $V(x)$ is at least $\gg (\log x)(\log\log x)^{-1}$. Our new method applies for the counting of sign changes of the partial sums of a system of orthogonal random variables having variance $1$ under additional hypothesis on the moments of these partial sums. The main input in our method is the ``linearity''...