June 2, 2018
Similar papers 5
October 19, 2006
Let $d,n$ be positive integers and $S$ be an arbitrary set of positive integers. We say that $d$ is an $S$-divisor of $n$ if $d|n$ and gcd $(d,n/d)\in S$. Consider the $S$-convolution of arithmetical functions given by (1.1), where the sum is extended over the $S$-divisors of $n$. We determine the sets $S$ such that the $S$-convolution is associative and preserves the multiplicativity of functions, respectively, and discuss other basic properties of it. We give asymptotic f...
August 3, 2011
We consider a wide class of summatory functions F{f;N,p^m}=\sum_{k\leq N}f(p^m k), m\in \mathbb Z_+\cup {0}, associated with the multiplicative arithmetic functions f of a scaled variable k\in \mathbb Z_+, where p is a prime number. Assuming an asymptotic behavior of summatory function, F{f;N,1}\stackrel{N\to \infty}{=}G_1(N) [1+ {\cal O}(G_2(N))], where G_1(N)=N^{a_1}(log N)^{b_1}, G_2(N)=N^{-a_2}(log N)^{-b_2} and a_1, a_2\geq 0, -\infty < b_1, b_2< \infty, we calculate a r...
June 6, 2016
In this work we discuss Dirichlet products evaluated at Fibonacci numbers. As first applications of the results we get a representation of Fibonacci numbers in terms of Euler's totient function, an upper bound on the number of primitive prime divisors and representations of some related Euler products. Moreover, we sum functions over all primitive divisors of a Fibonacci number and obtain a non--trivial fixed point of this operation.
October 9, 2006
The integer $d$ is called an exponential divisor of $n=\prod_{i=1}^r p_i^{a_i}>1$ if $d=\prod_{i=1}^r p_i^{c_i}$, where $c_i \mid a_i$ for every $1\le i \le r$. The integers $n=\prod_{i=1}^r p_i^{a_i}, m=\prod_{i=1}^r p_i^{b_i}>1$ having the same prime factors are called exponentially coprime if $(a_i,b_i)=1$ for every $1\le i\le r$. In the paper we investigate asymptotic properties of certain arithmetic functions involving exponential divisors and exponentially coprime int...
January 20, 2012
We translate Uchimura's identity for the divisor function and whose generalizations into combinatorics of partitions, and give a combinatorial proof of them. As a by-product of their proofs, we obtain some combinatorial results.
December 10, 2014
This study involves definitions for multiple-counting regular and summation sequences of rho. My paper introduces and proves recurrent relationships for multiple-counting sequences and shows their association with Fermat's little theorem. I also studied matrix representations and obtained generalized Binet formulas for defined sequences. As a result of multiple-counting sequence explanation, this study leads to a better understanding for distribution of composite numbers betw...
September 4, 2017
This paper deals with function field analogues of famous theorems of Laudau which counted the number of integers which have $t$ prime factors and R. Hall which researched the distribution of divisors of integers in residue classes.\;We extend the Selberg-Delange method to handle the following problems.\;The number of monic polynomials with degree $n$ have $t$ irreducible factors;\;The number of monic polynomials with degree $n$ in some residue classes have $t$ irreducible fac...
November 22, 2012
We prove the analogue of an identity of Huard, Ou, Spearman and Williams and apply it to evaluate a variety of sums involving divisor functions in two variables. It turns out that these sums count representations of positive integers involving radicals.
February 19, 2024
A classic theorem of Uchimura states that the difference between the sum of the smallest parts of the partitions of $n$ into an odd number of distinct parts and the corresponding sum for an even number of distinct parts is equal to the number of divisors of $n$. In this article, we initiate the study of the $k$th smallest part of a partition $\pi$ into distinct parts of any integer $n$, namely $s_k(\pi)$. Using $s_k(\pi)$, we generalize the above result for the $k$th smallest...
June 20, 2013
For a nonempty finite set $A$ of positive integers, let $\gcd\left(A\right)$ denote the greatest common divisor of the elements of $A$. Let $f\left(n\right)$ and $\Phi\left(n\right)$ denote, respectively, the number of subsets $A$ of $\left\{1, 2, \ldots, n\right\}$ such that $\gcd\left(A\right) = 1$ and the number of subsets $A$ of $\left\{1, 2, \ldots, n\right\}$ such that $\gcd\left(A\cup\left\{n\right\}\right) =1$. Let $D\left(n\right)$ be the divisor sum of $f\left(n\rig...