June 18, 2018
When studying social, economic and biological systems, one has often access to only limited information about the structure of the underlying networks. An example of paramount importance is provided by financial systems: information on the interconnections between financial institutions is privacy-protected, dramatically reducing the possibility of correctly estimating crucial systemic properties such as the resilience to the propagation of shocks. The need to compensate for the scarcity of data, while optimally employing the available information, has led to the birth of a research field known as network reconstruction. Since the latter has benefited from the contribution of researchers working in disciplines as different as mathematics, physics and economics, the results achieved so far are still scattered across heterogeneous publications. Most importantly, a systematic comparison of the network reconstruction methods proposed up to now is currently missing. This review aims at providing a unifying framework to present all these studies, mainly focusing on their application to economic and financial networks.
Similar papers 1
November 27, 2014
We address a fundamental problem that is systematically encountered when modeling complex systems: the limitedness of the information available. In the case of economic and financial networks, privacy issues severely limit the information that can be accessed and, as a consequence, the possibility of correctly estimating the resilience of these systems to events such as financial shocks, crises and cascade failures. Here we present an innovative method to reconstruct the stru...
September 3, 2019
To capture the systemic complexity of international financial systems, network data is an important prerequisite. However, dyadic data is often not available, raising the need for methods that allow for reconstructing networks based on limited information. In this paper, we are reviewing different methods that are designed for the estimation of matrices from their marginals and potentially exogenous information. This includes a general discussion of the available methodology ...
September 28, 2011
In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as Maximum Entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing ...
November 24, 2018
Due to the interconnectedness of financial entities, estimating certain key properties of a complex financial system (e.g. the implied level of systemic risk) requires detailed information about the structure of the underlying network. However, since data about financial linkages are typically subject to confidentiality, network reconstruction techniques become necessary to infer both the presence of connections and their intensity. Recently, several "horse races" have been c...
September 22, 2014
A fundamental problem in studying and modeling economic and financial systems is represented by privacy issues, which put severe limitations on the amount of accessible information. Here we introduce a novel, highly nontrivial method to reconstruct the structural properties of complex weighted networks of this kind using only partial information: the total number of nodes and links, and the values of the strength for all nodes. The latter are used as fitness to estimate the u...
October 12, 2017
In recent years, methods from network science are gaining rapidly interest in economics and finance. A reason for this is that in a globalized world the interconnectedness among economic and financial entities are crucial to understand and networks provide a natural framework for representing and studying such systems. In this paper, we are surveying the use of networks and network-based methods for studying economy related questions. We start with a brief overview of graph t...
December 4, 2020
Complex networks datasets often come with the problem of missing information: interactions data that have not been measured or discovered, may be affected by errors, or are simply hidden because of privacy issues. This Element provides an overview of the ideas, methods and techniques to deal with this problem and that together define the field of network reconstruction. Given the extent of the subject, we shall focus on the inference methods rooted in statistical physics and ...
July 8, 2013
Network topology plays a key role in many phenomena, from the spreading of diseases to that of financial crises. Whenever the whole structure of a network is unknown, one must resort to reconstruction methods that identify the least biased ensemble of networks consistent with the partial information available. A challenging case, frequently encountered due to privacy issues in the analysis of interbank flows and Big Data, is when there is only local (node-specific) aggregate ...
October 18, 2016
Reconstructing weighted networks from partial information is necessary in many important circumstances, e.g. for a correct estimation of systemic risk. It has been shown that, in order to achieve an accurate reconstruction, it is crucial to reliably replicate the empirical degree sequence, which is however unknown in many realistic situations. More recently, it has been found that the knowledge of the degree sequence can be replaced by the knowledge of the strength sequence, ...
July 27, 2018
In this article the problem of reconstructing the pattern of connection between agents from partial empirical data in a macro-economic model is addressed, given a set of behavioral equations. This systemic point of view puts the focus on distributional and network effects, rather than time-dependence. Using the theory of complex networks we compare several models to reconstruct both the topology and the flows of money of the different types of monetary transactions, while imp...