June 29, 2018
Similar papers 4
May 17, 2012
In r-neighbour bootstrap percolation on the vertex set of a graph G, vertices are initially infected independently with some probability p. At each time step, the infected set expands by infecting all uninfected vertices that have at least r infected neighbours. We study the distribution of the time t at which all vertices become infected. Given t = t(n) = o(log n/log log n), we prove a sharp threshold result for the probability that percolation occurs by time t in d-neighbou...
January 22, 2022
Consider a $p$-random subset $A$ of initially infected vertices in the discrete cube $[L]^d$, and assume that the neighbourhood of each vertex consists of the $a_i$ nearest neighbours in the $\pm e_i$-directions for each $i \in \{1,2,\dots, d\}$, where $a_1\le a_2\le \dots \le a_d$. Suppose we infect any healthy vertex $v\in [L]^d$ already having $r$ infected neighbours, and that infected sites remain infected forever. In this paper we determine the $(d-1)$-times iterated log...
March 29, 2004
We study the onset of the bootstrap percolation transition as a model of generalized dynamical arrest. We develop a new importance-sampling procedure in simulation, based on rare events around "holes", that enables us to access bootstrap lengths beyond those previously studied. By framing a new theory in terms of paths or processes that lead to emptying of the lattice we are able to develop systematic corrections to the existing theory, and compare them to simulations. Thereb...
August 25, 2015
We consider a dynamical process on a graph $G$, in which vertices are infected (randomly) at a rate which depends on the number of their neighbours that are already infected. This model includes bootstrap percolation and first-passage percolation as its extreme points. We give a precise description of the evolution of this process on the graph $\mathbb{Z}^2$, significantly sharpening results of Dehghanpour and Schonmann. In particular, we determine the typical infection time ...
January 29, 2009
Percolation is one of the simplest and nicest models in probability theory/statistical mechanics which exhibits critical phenomena. Dynamical percolation is a model where a simple time dynamics is added to the (ordinary) percolation model. This dynamical model exhibits very interesting behavior. Our goal in thissurvey is to give an overview of the work in dynamical percolation that has been done (and some of which is in the process of being written up).
December 2, 2015
Bootstrap percolation is an often used model to study the spread of diseases, rumors, and information on sparse random graphs. The percolation process demonstrates a critical value such that the graph is either almost completely affected or almost completely unaffected based on the initial seed being larger or smaller than the critical value. To analyze intervention strategies we provide the first analytic determination of the critical value for basic bootstrap percolation ...
February 18, 2014
Bootstrap percolation is a cellular automaton modelling the spread of an `infection' on a graph. In this note, we prove a family of lower bounds on the critical probability for $r$-neighbour bootstrap percolation on Galton--Watson trees in terms of moments of the offspring distributions. With this result we confirm a conjecture of Bollob\'as, Gunderson, Holmgren, Janson and Przykucki. We also show that these bounds are best possible up to positive constants not depending on t...
October 1, 2021
We study qualitative properties of two-dimensional freezing cellular automata with a binary state set initialized on a random configuration. If the automaton is also monotone, the setting is equivalent to bootstrap percolation. We explore the extent to which monotonicity constrains the possible asymptotic dynamics by proving two results that do not hold in the subclass of monotone automata. First, it is undecidable whether the automaton almost surely fills the space when init...
November 8, 2017
Based on extensive simulations, we conjecture that critically pinned interfaces in 2-dimensional isotropic random media with short range correlations are always in the universality class of ordinary percolation. Thus, in contrast to interfaces in $>2$ dimensions, there is no distinction between fractal (i.e., percolative) and rough but non-fractal interfaces. Our claim includes interfaces in zero-temperature random field Ising models (both with and without spontaneous nucleat...
May 23, 2013
We study the distribution of the percolation time $T$ of two-neighbour bootstrap percolation on $[n]^2$ with initial set $A\sim\mathrm{Bin}([n]^2,p)$. We determine $T$ with high probability up to a constant factor for all $p$ above the critical probability for percolation, and to within a $1+o(1)$ factor for a large range of $p$.