July 9, 2018
The power of quantum computers is still somewhat speculative. While they are certainly faster than classical ones at some tasks, the class of problems they can efficiently solve has not been mapped definitively onto known classical complexity theory. This means that we do not know for which calculations there will be a "quantum advantage," once an algorithm is found. One way to answer the question is to find those algorithms, but finding truly quantum algorithms turns out to be very difficult. In previous work over the past three decades we have pursued the idea of using techniques of machine learning to develop algorithms for quantum computing. Here we compare the performance of standard real- and complex-valued classical neural networks with that of one of our models for a quantum neural network, on both classical problems and on an archetypal quantum problem: the computation of an entanglement witness. The quantum network is shown to need far fewer epochs and a much smaller network to achieve comparable or better results.
Similar papers 1
December 7, 2018
Quantum machine learning has the potential for broad industrial applications, and the development of quantum algorithms for improving the performance of neural networks is of particular interest given the central role they play in machine learning today. In this paper we present quantum algorithms for training and evaluating feedforward neural networks based on the canonical classical feedforward and backpropagation algorithms. Our algorithms rely on an efficient quantum subr...
February 22, 2024
This paper provides an introduction to quantum machine learning, exploring the potential benefits of using quantum computing principles and algorithms that may improve upon classical machine learning approaches. Quantum computing utilizes particles governed by quantum mechanics for computational purposes, leveraging properties like superposition and entanglement for information representation and manipulation. Quantum machine learning applies these principles to enhance class...
May 15, 2023
Neural networks have achieved impressive breakthroughs in both industry and academia. How to effectively develop neural networks on quantum computing devices is a challenging open problem. Here, we propose a new quantum neural network model for quantum neural computing using (classically-controlled) single-qubit operations and measurements on real-world quantum systems with naturally occurring environment-induced decoherence, which greatly reduces the difficulties of physical...
February 22, 2002
An outstanding problem in quantum computing is the calculation of entanglement, for which no closed-form algorithm exists. Here we solve that problem, and demonstrate the utility of a quantum neural computer, by showing, in simulation, that such a device can be trained to calculate the entanglement of an input state, something neither an algorithmic quantum computer nor a classical neural net can do.
June 9, 2021
The core of quantum machine learning is to devise quantum models with good trainability and low generalization error bound than their classical counterparts to ensure better reliability and interpretability. Recent studies confirmed that quantum neural networks (QNNs) have the ability to achieve this goal on specific datasets. With this regard, it is of great importance to understand whether these advantages are still preserved on real-world tasks. Through systematic numerica...
February 7, 2021
Neural networks are computing models that have been leading progress in Machine Learning (ML) and Artificial Intelligence (AI) applications. In parallel, the first small scale quantum computing devices have become available in recent years, paving the way for the development of a new paradigm in information processing. Here we give an overview of the most recent proposals aimed at bringing together these ongoing revolutions, and particularly at implementing the key functional...
June 6, 2022
Machine learning has achieved dramatic success over the past decade, with applications ranging from face recognition to natural language processing. Meanwhile, rapid progress has been made in the field of quantum computation including developing both powerful quantum algorithms and advanced quantum devices. The interplay between machine learning and quantum physics holds the intriguing potential for bringing practical applications to the modern society. Here, we focus on quan...
August 19, 2021
While quantum architectures are still under development, when available, they will only be able to process quantum data when machine learning algorithms can only process numerical data. Therefore, in the issues of classification or regression, it is necessary to simulate and study quantum systems that will transfer the numerical input data to a quantum form and enable quantum computers to use the available methods of machine learning. This material includes the results of exp...
November 30, 2017
Even the most sophisticated artificial neural networks are built by aggregating substantially identical units called neurons. A neuron receives multiple signals, internally combines them, and applies a non-linear function to the resulting weighted sum. Several attempts to generalize neurons to the quantum regime have been proposed, but all proposals collided with the difficulty of implementing non-linear activation functions, which is essential for classical neurons, due to t...
July 8, 2021
Artificial neural networks have achieved great success in many fields ranging from image recognition to video understanding. However, its high requirements for computing and memory resources have limited further development on processing big data with high dimensions. In recent years, advances in quantum computing show that building neural networks on quantum processors is a potential solution to this problem. In this paper, we propose a novel neural network model named Quant...