September 20, 2018
Similar papers 5
May 13, 2015
Clustering is widely studied in statistics and machine learning, with applications in a variety of fields. As opposed to classical algorithms which return a single clustering solution, Bayesian nonparametric models provide a posterior over the entire space of partitions, allowing one to assess statistical properties, such as uncertainty on the number of clusters. However, an important problem is how to summarize the posterior; the huge dimension of partition space and difficu...
January 16, 2013
The K-Mean and EM algorithms are popular in clustering and mixture modeling, due to their simplicity and ease of implementation. However, they have several significant limitations. Both coverage to a local optimum of their respective objective functions (ignoring the uncertainty in the model space), require the apriori specification of the number of classes/clsuters, and are inconsistent. In this work we overcome these limitations by using the Minimum Message Length (MML) pri...
December 17, 2011
This paper provides a theoretical support for clustering aspect of the nonnegative matrix factorization (NMF). By utilizing the Karush-Kuhn-Tucker optimality conditions, we show that NMF objective is equivalent to graph clustering objective, so clustering aspect of the NMF has a solid justification. Different from previous approaches which usually discard the nonnegativity constraints, our approach guarantees the stationary point being used in deriving the equivalence is loca...
May 6, 2020
Non-Gaussian mixture models are gaining increasing attention for mixture model-based clustering particularly when dealing with data that exhibit features such as skewness and heavy tails. Here, such a mixture distribution is presented, based on the multivariate normal inverse Gaussian (MNIG) distribution. For parameter estimation of the mixture, a Bayesian approach via Gibbs sampler is used; for this, a novel approach to simulate univariate generalized inverse Gaussian random...
May 4, 2021
Gaussian mixture models are a popular tool for model-based clustering, and mixtures of factor analyzers are Gaussian mixture models having parsimonious factor covariance structure for mixture components. There are several recent extensions of mixture of factor analyzers to deep mixtures, where the Gaussian model for the latent factors is replaced by a mixture of factor analyzers. This construction can be iterated to obtain a model with many layers. These deep models are chall...
January 30, 2013
We examine methods for clustering in high dimensions. In the first part of the paper, we perform an experimental comparison between three batch clustering algorithms: the Expectation-Maximization (EM) algorithm, a winner take all version of the EM algorithm reminiscent of the K-means algorithm, and model-based hierarchical agglomerative clustering. We learn naive-Bayes models with a hidden root node, using high-dimensional discrete-variable data sets (both real and synthetic)...
June 3, 2019
The non-negative matrix factorization (NMF) model with an additional orthogonality constraint on one of the factor matrices, called the orthogonal NMF (ONMF), has been found a promising clustering model and can outperform the classical K-means. However, solving the ONMF model is a challenging optimization problem because the coupling of the orthogonality and non-negativity constraints introduces a mixed combinatorial aspect into the problem due to the determination of the cor...
September 8, 2021
Non-negative matrix factorization (NMF) has become a popular method for representing meaningful data by extracting a non-negative basis feature from an observed non-negative data matrix. Some of the unique features of this method in identifying hidden data put this method amongst the powerful methods in the machine learning area. The NMF is a known non-convex optimization problem and the initial point has a significant effect on finding an efficient local solution. In this pa...
October 19, 2012
We describe a probabilistic (generative) view of affinity matrices along with inference algorithms for a subclass of problems associated with data clustering. This probabilistic view is helpful in understanding different models and algorithms that are based on affinity functions OF the data. IN particular, we show how(greedy) inference FOR a specific probabilistic model IS equivalent TO the spectral clustering algorithm.It also provides a framework FOR developing new algorith...
September 27, 2020
When using Markov chain Monte Carlo (MCMC) algorithms to perform inference for Bayesian clustering models, such as mixture models, the output is typically a sample of clusterings (partitions) drawn from the posterior distribution. In practice, a key challenge is how to summarise this output. Here we build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models. A k...