ID: 1811.06490

Estimating Calabi-Yau Hypersurface and Triangulation Counts with Equation Learners

November 15, 2018

View on ArXiv
Ross Altman, Jonathan Carifio, James Halverson, Brent D. Nelson
High Energy Physics - Theory

We provide the first estimate of the number of fine, regular, star triangulations of the four-dimensional reflexive polytopes, as classified by Kreuzer and Skarke (KS). This provides an upper bound on the number of Calabi-Yau threefold hypersurfaces in toric varieties. The estimate is performed with deep learning, specifically the novel equation learner (EQL) architecture. We demonstrate that EQL networks accurately predict numbers of triangulations far beyond the $h^{1,1}$ training region, allowing for reliable extrapolation. We estimate that number of triangulations in the KS dataset is $10^{10,505}$, dominated by the polytope with the highest $h^{1,1}$ value.

Similar papers 1

Machine Learning Kreuzer--Skarke Calabi--Yau Threefolds

December 16, 2021

92% Match
Per Berglund, Ben Campbell, Vishnu Jejjala
Machine Learning
Algebraic Geometry

Using a fully connected feedforward neural network we study topological invariants of a class of Calabi--Yau manifolds constructed as hypersurfaces in toric varieties associated with reflexive polytopes from the Kreuzer--Skarke database. In particular, we find the existence of a simple expression for the Euler number that can be learned in terms of limited data extracted from the polytope and its dual.

Find SimilarView on arXiv

Bounding the Kreuzer-Skarke Landscape

August 4, 2020

91% Match
Mehmet Demirtas, Liam McAllister, Andres Rios-Tascon
High Energy Physics - Theory

We study Calabi-Yau threefolds with large Hodge numbers by constructing and counting triangulations of reflexive polytopes. By counting points in the associated secondary polytopes, we show that the number of fine, regular, star triangulations of polytopes in the Kreuzer-Skarke list is bounded above by $\binom{14,111}{494} \approx 10^{928}$. Adapting a result of Anclin on triangulations of lattice polygons, we obtain a bound on the number of triangulations of each 2-face of e...

Find SimilarView on arXiv

Machine Learning Calabi-Yau Four-folds

September 5, 2020

88% Match
Yang-Hui He, Andre Lukas
Algebraic Geometry
Machine Learning

Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they present an interesting challenge for machine learning. In this letter we consider the data set of complete intersection Calabi-Yau four-folds, a set of about 900,000 topological types, and study supervised learning of the Hodge numbers h^1,1 and h^3,1 for these manifolds. We find that h^1,1 can be successfully learned (to 96% precision) by fully connected classifier and regress...

Find SimilarView on arXiv

Deep multi-task mining Calabi-Yau four-folds

August 4, 2021

88% Match
Harold Erbin, Riccardo Finotello, ... , Tamaazousti Mohamed
Machine Learning
Algebraic Geometry

We continue earlier efforts in computing the dimensions of tangent space cohomologies of Calabi-Yau manifolds using deep learning. In this paper, we consider the dataset of all Calabi-Yau four-folds constructed as complete intersections in products of projective spaces. Employing neural networks inspired by state-of-the-art computer vision architectures, we improve earlier benchmarks and demonstrate that all four non-trivial Hodge numbers can be learned at the same time using...

Find SimilarView on arXiv

Constructing and Machine Learning Calabi-Yau Five-folds

October 24, 2023

88% Match
R. Alawadhi, D. Angella, ... , Gherardini T. Schettini
Machine Learning
Algebraic Geometry

We construct all possible complete intersection Calabi-Yau five-folds in a product of four or less complex projective spaces, with up to four constraints. We obtain $27068$ spaces, which are not related by permutations of rows and columns of the configuration matrix, and determine the Euler number for all of them. Excluding the $3909$ product manifolds among those, we calculate the cohomological data for $12433$ cases, i.e. $53.7 \%$ of the non-product spaces, obtaining $2375...

Find SimilarView on arXiv

A Calabi-Yau Database: Threefolds Constructed from the Kreuzer-Skarke List

November 5, 2014

87% Match
Ross Altman, James Gray, Yang-Hui He, ... , Nelson Brent D.
Algebraic Geometry

Kreuzer and Skarke famously produced the largest known database of Calabi-Yau threefolds by providing a complete construction of all 473,800,776 reflexive polyhedra that exist in four dimensions. These polyhedra describe the singular limits of ambient toric varieties in which Calabi-Yau threefolds can exist as hypersurfaces. In this paper, we review how to extract topological and geometric information about Calabi-Yau threefolds using the toric construction, and we provide, i...

Find SimilarView on arXiv

Deep Learning Calabi-Yau four folds with hybrid and recurrent neural network architectures

May 27, 2024

87% Match
H. L. Dao
Machine Learning
Algebraic Geometry

In this work, we report the results of applying deep learning based on hybrid convolutional-recurrent and purely recurrent neural network architectures to the dataset of almost one million complete intersection Calabi-Yau four-folds (CICY4) to machine-learn their four Hodge numbers $h^{1,1}, h^{2,1}, h^{3,1}, h^{2,2}$. In particular, we explored and experimented with twelve different neural network models, nine of which are convolutional-recurrent (CNN-RNN) hybrids with the R...

Find SimilarView on arXiv

Calabi-Yau Four/Five/Six-folds as $\mathbb{P}^n_\textbf{w}$ Hypersurfaces: Machine Learning, Approximation, and Generation

November 28, 2023

87% Match
Edward Hirst, Tancredi Schettini Gherardini
Algebraic Geometry
Machine Learning

Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...

Find SimilarView on arXiv

Deep learning complete intersection Calabi-Yau manifolds

November 20, 2023

86% Match
Harold Erbin, Riccardo Finotello
Machine Learning
Algebraic Geometry

We review advancements in deep learning techniques for complete intersection Calabi-Yau (CICY) 3- and 4-folds, with the aim of understanding better how to handle algebraic topological data with machine learning. We first discuss methodological aspects and data analysis, before describing neural networks architectures. Then, we describe the state-of-the art accuracy in predicting Hodge numbers. We include new results on extrapolating predictions from low to high Hodge numbers,...

Find SimilarView on arXiv

Machine Learning of Calabi-Yau Volumes

June 11, 2017

86% Match
Daniel Krefl, Rak-Kyeong Seong
Algebraic Geometry

We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein base manifolds of non-compact toric Calabi-Yau 3-folds. We find that the minimum volume can be approximated via a second order multiple linear regression on standard topological quantities obtained from the corresponding toric diagram. The approximation improves further after invoking a convolutional neural network with the full toric diagram of the Calabi-Yau 3-folds as the input. We a...

Find SimilarView on arXiv