ID: 1812.02893

The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning

December 7, 2018

View on ArXiv

Similar papers 2

Machine learning Calabi-Yau metrics

October 18, 2019

89% Match
Anthony Ashmore, Yang-Hui He, Burt Ovrut
Algebraic Geometry
Machine Learning

We apply machine learning to the problem of finding numerical Calabi-Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on K\"ahler manifolds, we combine conventional curve fitting and machine-learning techniques to numerically approximate Ricci-flat metrics. We show that machine learning is able to predict the Calabi-Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this...

Find SimilarView on arXiv

Machine Learning in Physics and Geometry

March 22, 2023

89% Match
Yang-Hui He, Elli Heyes, Edward Hirst
Algebraic Geometry
Mathematical Physics

We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to hel...

Find SimilarView on arXiv

Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning

December 8, 2020

89% Match
Lara B. Anderson, Mathis Gerdes, James Gray, Sven Krippendorf, ... , Ruehle Fabian
High Energy Physics - Theory

We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string...

Find SimilarView on arXiv
David S. Berman, Yang-Hui He, Edward Hirst
Algebraic Geometry
Machine Learning

We revisit the classic database of weighted-P4s which admit Calabi-Yau 3-fold hypersurfaces equipped with a diverse set of tools from the machine-learning toolbox. Unsupervised techniques identify an unanticipated almost linear dependence of the topological data on the weights. This then allows us to identify a previously unnoticed clustering in the Calabi-Yau data. Supervised techniques are successful in predicting the topological parameters of the hypersurface from its weig...

Calabi-Yau Four/Five/Six-folds as $\mathbb{P}^n_\textbf{w}$ Hypersurfaces: Machine Learning, Approximation, and Generation

November 28, 2023

89% Match
Edward Hirst, Tancredi Schettini Gherardini
Algebraic Geometry
Machine Learning

Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...

Find SimilarView on arXiv

Machine Learning Calabi-Yau Four-folds

September 5, 2020

89% Match
Yang-Hui He, Andre Lukas
Algebraic Geometry
Machine Learning

Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they present an interesting challenge for machine learning. In this letter we consider the data set of complete intersection Calabi-Yau four-folds, a set of about 900,000 topological types, and study supervised learning of the Hodge numbers h^1,1 and h^3,1 for these manifolds. We find that h^1,1 can be successfully learned (to 96% precision) by fully connected classifier and regress...

Find SimilarView on arXiv

Calabi-Yau Metrics, Energy Functionals and Machine-Learning

December 20, 2021

88% Match
Anthony Ashmore, Lucille Calmon, ... , Ovrut Burt A.
Machine Learning
Algebraic Geometry

We apply machine learning to the problem of finding numerical Calabi-Yau metrics. We extend previous work on learning approximate Ricci-flat metrics calculated using Donaldson's algorithm to the much more accurate "optimal" metrics of Headrick and Nassar. We show that machine learning is able to predict the K\"ahler potential of a Calabi-Yau metric having seen only a small sample of training data.

Find SimilarView on arXiv

Numerical Calabi-Yau metrics from holomorphic networks

December 9, 2020

88% Match
Michael R. Douglas, Subramanian Lakshminarasimhan, Yidi Qi
Complex Variables
Computational Physics

We propose machine learning inspired methods for computing numerical Calabi-Yau (Ricci flat K\"ahler) metrics, and implement them using Tensorflow/Keras. We compare them with previous work, and find that they are far more accurate for manifolds with little or no symmetry. We also discuss issues such as overparameterization and choice of optimization methods.

Find SimilarView on arXiv

Lectures on complex geometry, Calabi-Yau manifolds and toric geometry

February 8, 2007

88% Match
Vincent Bouchard
High Energy Physics - Theory

These are introductory lecture notes on complex geometry, Calabi-Yau manifolds and toric geometry. We first define basic concepts of complex and Kahler geometry. We then proceed with an analysis of various definitions of Calabi-Yau manifolds. The last section provides a short introduction to toric geometry, aimed at constructing Calabi-Yau manifolds in two different ways; as hypersurfaces in toric varieties and as local toric Calabi-Yau threefolds. These lecture notes supplem...

Find SimilarView on arXiv

String Theory on Calabi-Yau Manifolds

February 23, 1997

88% Match
Brian Greene
High Energy Physics - Theory

These lectures are devoted to introducing some of the basic features of quantum geometry that have been emerging from compactified string theory over the last couple of years. The developments discussed include new geometric features of string theory which occur even at the classical level as well as those which require non-perturbative effects. These lecture notes are based on an evolving set of lectures presented at a number of schools but most closely follow a series of se...

Find SimilarView on arXiv