December 14, 2018
Similar papers 3
December 21, 2019
We review the study of rogue waves and related instabilities in optical and oceanic environments, with particular focus on recent experimental developments. In optics, we emphasize results arising from the use of real-time measurement techniques, whilst in oceanography we consider insights obtained from analysis of real-world ocean wave data and controlled experiments in wave tanks. Although significant progress in understanding rogue waves has been made based on an analogy b...
March 4, 2016
The formation of coherent structures in noise driven phenomena and in Turbulence is a complex and fundamental question. A particulary important structure is the so-called Rogue Wave (RW) that arises as the sudden appearance of a localized and giant peak. First studied in Oceanography, RWs have been extensively investigated in Optics since 2007, in particular in optical fibers experiments on supercontinua and optical turbulence. However the typical time scales underlying the r...
November 24, 2015
The discovery of a new type of solitons occuring in periodic systems without photonic bandgaps is reported. Solitons are nonlinear self-trapped wave packets. They have been extensively studied in many branches of physics. Solitons in periodic systems, which have become the mainstream of soliton research in the past decade, are localized states supported by photonic bandgaps. In this Letter, we report the discovery of a new type of solitons located at the Dirac point beyond ph...
September 1, 2020
This article discusses a limiting behavior of breather solutions of the focusing nonlinear Schr\"odinger (NLS) equation. These breathers belong to the families of solitons on a non-vanishing and constant background, where the continuous-wave envelope serves as a pedestal. The rational Peregrine soliton acts as a limiting behavior of the other two breather solitons, i.e., the Kuznetsov-Ma breather and Akhmediev soliton. Albeit with a phase shift, the latter becomes a nonlinear...
February 25, 2011
We find that a surface soliton in nonlocal nonlinear media can be regarded as a half of a bulk soliton with an antisymmetric amplitude distribution. The analytical solutions for the surface solitons and breathers in strongly nonlocal media are obtained, and the critical power and breather period are gotten analytically and confirmed by numerical simulations. In addition, the oscillating propagation of nonlocal surface solitons launched away from the stationary position is con...
November 8, 2011
Rogue waves are solitary waves with extreme amplitudes, which appear to be a ubiquitous phenomenon in nonlinear wave propagation, with the requirement for a nonlinearity being their only unifying characteristics. While many mechanisms have been demonstrated to explain the appearance of rogue waves in a specific system, there is no known generic mechanism or general set of criteria shown to rule their appearance. Presupposing only the existence of a nonlinear Schr\"odinger-typ...
December 3, 2015
Dynamics of solitons is considered in the framework of an extended nonlinear Schr\"odinger equation (NLSE), which is derived from a Zakharov-type model for wind-driven high-frequency (HF) surface waves in the ocean, coupled to damped low-frequency (LF) internal waves. The drive gives rise to a convective (but not absolute) instability in the system. The resulting NLSE includes a pseudo-stimulated-Raman-scattering (pseudo-SRS) term, which is a spatial-domain counterpart of the...
October 11, 2010
This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emp...
October 5, 2020
An experimental procedure for studying soliton gases in shallow water is devised. Nonlinear waves propagate at constant depth in a 34\,m-long wave flume. At one end of the flume, the waves are generated by a piston-type wave-maker. The opposite end is a vertical wall. Wave interactions are recorded with a video system using seven side-looking cameras with a pixel resolution of 1\,mm, covering 14\,m of the flume. The accuracy in the detection of the water surface elevation is ...
October 1, 2018
We present a detailed study of the phase properties of rational breather waves observed in the hydrodynamic and optical domains, namely the Peregrine soliton and related second-order solution. At the point of maximum compression, our experimental results recorded in a wave tank or using an optical fiber platform reveal a characteristic phase shift that is multiple of $\pi$ between the central part of the pulse and the continuous background, in agreement with analytical and nu...