January 16, 2019
Similar papers 5
May 15, 2018
We compare the sets of Calabi-Yau threefolds with large Hodge numbers that are constructed using toric hypersurface methods with those can be constructed as elliptic fibrations using Weierstrass model techniques motivated by F-theory. There is a close correspondence between the structure of "tops" in the toric polytope construction and Tate form tunings of Weierstrass models for elliptic fibrations. We find that all of the Hodge number pairs ($h^{1, 1},h^{2, 1}$) with $h^{1,1...
October 10, 2023
We enumerate topologically-inequivalent compact Calabi-Yau threefold hypersurfaces. By computing arithmetic and algebraic invariants and the Gopakumar-Vafa invariants of curves, we prove that the number of distinct simply connected Calabi-Yau threefold hypersurfaces resulting from triangulations of four-dimensional reflexive polytopes is 4, 27, 183, 1,184 and 8,036 at $h^{1,1}$ = 1, 2, 3, 4, and 5, respectively. We also establish that there are ten equivalence classes of Wall...
April 22, 2022
We prove that the GKZ $\mathscr{D}$-module $\mathcal{M}_{A}^{\beta}$ arising from Calabi--Yau fractional complete intersections in toric varieties is complete, i.e., all the solutions to $\mathcal{M}_{A}^{\beta}$ are period integrals. This particularly implies that $\mathcal{M}_{A}^{\beta}$ is equivalent to the Picard--Fuchs system. As an application, we give explicit formulae of the period integrals of Calabi--Yau threefolds coming from double covers of $\mathbf{P}^{3}$ bran...
February 10, 2017
This article is based on a series of lectures on toric varieties given at RIMS, Kyoto. We start by introducing toric varieties, their basic properties and later pass to more advanced topics relating mostly to combinatorics.
April 25, 2017
We analyze freely-acting discrete symmetries of Calabi-Yau three-folds defined as hypersurfaces in ambient toric four-folds. An algorithm which allows the systematic classification of such symmetries which are linearly realised on the toric ambient space is devised. This algorithm is applied to all Calabi-Yau manifolds with $h^{1,1}(X)\leq 3$ obtained by triangulation from the Kreuzer-Skarke list, a list of some $350$ manifolds. All previously known freely-acting symmetries o...
July 15, 2009
We use Batyrev-Borisov's formula for the generating function of stringy Hodge numbers of Calabi-Yau varieties realized as complete intersections in toric varieties in order to get closed form expressions for Hodge numbers of Calabi-Yau threefolds in five-dimensional ambient spaces. These expressions involve counts of lattice points on faces of associated Cayley polytopes. Using the same techniques, similar expressions may be obtained for higher dimensional varieties realized ...
March 10, 2003
In this paper we start the program of constructing generalized special Lagrangian torus fibrations for Calabi-Yau hypersurfaces in toric variety near the large complex limit, with respect to the restriction of a toric metric on the toric variety to the Calabi-Yau hypersurface. The construction is based on the deformation of the standard toric generalized special Lagrangian torus fibration of the large complex limit $X_0$. In this paper, we will deal with the region near the s...
August 10, 2020
In this article, we study mirror symmetry for pairs of singular Calabi--Yau manifolds which are double covers of toric manifolds. Their period integrals can be seen as certain `fractional' analogues of those of ordinary complete intersections. This new structure can then be used to solve their Riemann--Hilbert problems. The latter can then be used to answer definitively questions about mirror symmetry for this class of Calabi--Yau manifolds.
March 7, 2013
We present an exhaustive, constructive, classification of the Calabi-Yau four-folds which can be described as complete intersections in products of projective spaces. A comprehensive list of 921,497 configuration matrices which represent all topologically distinct types of complete intersection Calabi-Yau four-folds is provided and can be downloaded at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/Cicy4folds/index.html . The manifolds have non-negative Euler character...
March 16, 2020
The presented paper is a continuation of the series of papers arXiv:1810.00606 and arXiv:1903.09373. In this paper, utilizing Batyrev and Borisov's duality construction on nef-partitions, we generalize the recipe in arXiv:1810.00606 and arXiv:1903.09373 to construct a pair of singular double cover Calabi--Yau varieties $(Y,Y^{\vee})$ over toric manifolds and compute their topological Euler characteristics and Hodge numbers. In the $3$-dimensional cases, we show that $(Y,Y^{\v...