February 4, 2019
Similar papers 2
October 6, 2016
Discovering dense subgraphs and understanding the relations among them is a fundamental problem in graph mining. We want to not only identify dense subgraphs, but also build a hierarchy among them (e.g., larger but sparser subgraphs formed by two smaller dense subgraphs). Peeling algorithms (k-core, k-truss, and nucleus decomposition) have been effective to locate many dense subgraphs. However, constructing a hierarchical representation of density structure, even correctly co...
October 9, 2006
One property of networks that has received comparatively little attention is hierarchy, i.e., the property of having vertices that cluster together in groups, which then join to form groups of groups, and so forth, up through all levels of organization in the network. Here, we give a precise definition of hierarchical structure, give a generic model for generating arbitrary hierarchical structure in a random graph, and describe a statistically principled way to learn the set ...
November 4, 2008
Networks have in recent years emerged as an invaluable tool for describing and quantifying complex systems in many branches of science. Recent studies suggest that networks often exhibit hierarchical organization, where vertices divide into groups that further subdivide into groups of groups, and so forth over multiple scales. In many cases these groups are found to correspond to known functional units, such as ecological niches in food webs, modules in biochemical networks (...
June 29, 2006
In some applications of matching, the structural or hierarchical properties of the two graphs being aligned must be maintained. The hierarchical properties are induced by the direction of the edges in the two directed graphs. These structural relationships defined by the hierarchy in the graphs act as a constraint on the alignment. In this paper, we formalize the above problem as the weighted alignment between two directed acyclic graphs. We prove that this problem is NP-comp...
December 20, 2018
Humans are social by nature. Throughout history, people have formed communities and built relationships. Most relationships with coworkers, friends, and family are developed during face-to-face interactions. These relationships are established through explicit means of communications such as words and implicit such as intonation, body language, etc. By analyzing human interactions we can derive information about the relationships and influence among conversation participants....
June 5, 2020
Hierarchies permeate the structure of real networks, whose nodes can be ranked according to different features. However, networks are far from tree-like structures and the detection of hierarchical ordering remains a challenge, hindered by the small-world property and the presence of a large number of cycles, in particular clustering. Here, we use geometric representations of undirected networks to achieve an enriched interpretation of hierarchy that integrates features defin...
December 10, 2021
Given a massive graph, how can we exploit its hierarchical structure for concisely but exactly summarizing the graph? By exploiting the structure, can we achieve better compression rates than state-of-the-art graph summarization methods? The explosive proliferation of the Web has accelerated the emergence of large graphs, such as online social networks and hyperlink networks. Consequently, graph compression has become increasingly important to process such large graphs with...
January 24, 2017
Social networks contain implicit knowledge that can be used to infer hierarchical relations that are not explicitly present in the available data. Interaction patterns are typically affected by users' social relations. We present an approach to inferring such information that applies a link-analysis ranking algorithm at different levels of time granularity. In addition, a voting scheme is employed for obtaining the hierarchical relations. The approach is evaluated on two data...
October 18, 2012
Multi-layered social networks consist of the fixed set of nodes linked by multiple connections. These connections may be derived from different types of user activities logged in the IT system. To calculate any structural measures for multi-layered networks this multitude of relations should be coped with in the parameterized way. Two separate algorithms for evaluation of shortest paths in the multi-layered social network are proposed in the paper. The first one is based on p...
June 20, 2024
Expander decompositions of graphs have significantly advanced the understanding of many classical graph problems and led to numerous fundamental theoretical results. However, their adoption in practice has been hindered due to their inherent intricacies and large hidden factors in their asymptotic running times. Here, we introduce the first practically efficient algorithm for computing expander decompositions and their hierarchies and demonstrate its effectiveness and utility...