February 27, 2019
Neural networks enjoy widespread success in both research and industry and, with the imminent advent of quantum technology, it is now a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose the use of quantum neurons as a building block for quantum feed-forward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function and provide both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing the optimisation of deep networks. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.
Similar papers 1
December 7, 2018
Quantum machine learning has the potential for broad industrial applications, and the development of quantum algorithms for improving the performance of neural networks is of particular interest given the central role they play in machine learning today. In this paper we present quantum algorithms for training and evaluating feedforward neural networks based on the canonical classical feedforward and backpropagation algorithms. Our algorithms rely on an efficient quantum subr...
September 21, 2023
Quantum noise is currently limiting efficient quantum information processing and computation. In this work, we consider the tasks of reconstructing and classifying quantum states corrupted by the action of an unknown noisy channel using classical feedforward neural networks. By framing reconstruction as a regression problem, we show how such an approach can be used to recover with fidelities exceeding 99% the noiseless density matrices of quantum states of up to three qubits ...
March 3, 2021
In the last few years, quantum computing and machine learning fostered rapid developments in their respective areas of application, introducing new perspectives on how information processing systems can be realized and programmed. The rapidly growing field of Quantum Machine Learning aims at bringing together these two ongoing revolutions. Here we first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quan...
May 30, 2024
Quantum machine learning requires powerful, flexible and efficiently trainable models to be successful in solving challenging problems. In this work, we present density quantum neural networks, a learning model incorporating randomisation over a set of trainable unitaries. These models generalise quantum neural networks using parameterised quantum circuits, and allow a trade-off between expressibility and efficient trainability, particularly on quantum hardware. We demonstrat...
December 10, 2014
In recent years, deep learning has had a profound impact on machine learning and artificial intelligence. At the same time, algorithms for quantum computers have been shown to efficiently solve some problems that are intractable on conventional, classical computers. We show that quantum computing not only reduces the time required to train a deep restricted Boltzmann machine, but also provides a richer and more comprehensive framework for deep learning than classical computin...
March 21, 2021
In the past decade, remarkable progress has been achieved in deep learning related systems and applications. In the post Moore's Law era, however, the limit of semiconductor fabrication technology along with the increasing data size have slowed down the development of learning algorithms. In parallel, the fast development of quantum computing has pushed it to the new ear. Google illustrates quantum supremacy by completing a specific task (random sampling problem), in 200 seco...
December 29, 2019
In this paper, we introduce a quantum extension of classical DNN, QDNN. The QDNN consisting of quantum structured layers can uniformly approximate any continuous function and has more representation power than the classical DNN. It still keeps the advantages of the classical DNN such as the non-linear activation, the multi-layer structure, and the efficient backpropagation training algorithm. Moreover, the QDNN can be used on near-term noisy intermediate-scale quantum process...
December 4, 2016
We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e.\ unitary. (The classical networks we generalise are called feedforward, and have step-function activation functions.) The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstr...
February 22, 2024
This paper provides an introduction to quantum machine learning, exploring the potential benefits of using quantum computing principles and algorithms that may improve upon classical machine learning approaches. Quantum computing utilizes particles governed by quantum mechanics for computational purposes, leveraging properties like superposition and entanglement for information representation and manipulation. Quantum machine learning applies these principles to enhance class...
May 17, 2022
This PhD thesis combines two of the most exciting research areas of the last decades: quantum computing and machine learning. We introduce dissipative quantum neural networks (DQNNs), which are designed for fully quantum learning tasks, are capable of universal quantum computation and have low memory requirements while training. These networks are optimised with training data pairs in form of input and desired output states and therefore can be used for characterising unknown...