June 6, 2022
Machine learning has achieved dramatic success over the past decade, with applications ranging from face recognition to natural language processing. Meanwhile, rapid progress has been made in the field of quantum computation including developing both powerful quantum algorithms and advanced quantum devices. The interplay between machine learning and quantum physics holds the intriguing potential for bringing practical applications to the modern society. Here, we focus on quan...
August 29, 2018
Physically motivated quantum algorithms for specific near-term quantum hardware will likely be the next frontier in quantum information science. Here, we show how many of the features of neural networks for machine learning can naturally be mapped into the quantum optical domain by introducing the quantum optical neural network (QONN). Through numerical simulation and analysis we train the QONN to perform a range of quantum information processing tasks, including newly develo...
April 25, 2018
This text aims to present and explain quantum machine learning algorithms to a data scientist in an accessible and consistent way. The algorithms and equations presented are not written in rigorous mathematical fashion, instead, the pressure is put on examples and step by step explanation of difficult topics. This contribution gives an overview of selected quantum machine learning algorithms, however there is also a method of scores extraction for quantum PCA algorithm propos...
December 1, 2020
Deep neural network powered artificial intelligence has rapidly changed our daily life with various applications. However, as one of the essential steps of deep neural networks, training a heavily weighted network requires a tremendous amount of computing resources. Especially in the post-Moore's Law era, the limit of semiconductor fabrication technology has restricted the development of learning algorithms to cope with the increasing high-intensity training data. Meanwhile, ...
March 2, 2018
We propose a classical-quantum hybrid algorithm for machine learning on near-term quantum processors, which we call quantum circuit learning. A quantum circuit driven by our framework learns a given task by tuning parameters implemented on it. The iterative optimization of the parameters allows us to circumvent the high-depth circuit. Theoretical investigation shows that a quantum circuit can approximate nonlinear functions, which is further confirmed by numerical simulations...
January 5, 2021
These brief lecture notes cover the basics of neural networks and deep learning as well as their applications in the quantum domain, for physicists without prior knowledge. In the first part, we describe training using backpropagation, image classification, convolutional networks and autoencoders. The second part is about advanced techniques like reinforcement learning (for discovering control strategies), recurrent neural networks (for analyzing time traces), and Boltzmann m...
June 21, 2022
Predicting the output of quantum circuits is a hard computational task that plays a pivotal role in the development of universal quantum computers. Here we investigate the supervised learning of output expectation values of random quantum circuits. Deep convolutional neural networks (CNNs) are trained to predict single-qubit and two-qubit expectation values using databases of classically simulated circuits. These circuits are represented via an appropriately designed one-hot ...
August 24, 2023
The training of neural networks (NNs) is a computationally intensive task requiring significant time and resources. This paper presents a novel approach to NN training using Adiabatic Quantum Computing (AQC), a paradigm that leverages the principles of adiabatic evolution to solve optimisation problems. We propose a universal AQC method that can be implemented on gate quantum computers, allowing for a broad range of Hamiltonians and thus enabling the training of expressive ne...
June 20, 2021
For the last few decades, classical machine learning has allowed us to improve the lives of many through automation, natural language processing, predictive analytics and much more. However, a major concern is the fact that we're fast approach the threshold of the maximum possible computational capacity available to us by the means of classical computing devices including CPUs, GPUs and Application Specific Integrated Circuits (ASICs). This is due to the exponential increase ...
December 14, 2022
Quantum machine learning techniques have been proposed as a way to potentially enhance performance in machine learning applications. In this paper, we introduce two new quantum methods for neural networks. The first one is a quantum orthogonal neural network, which is based on a quantum pyramidal circuit as the building block for implementing orthogonal matrix multiplication. We provide an efficient way for training such orthogonal neural networks; novel algorithms are deta...