March 4, 2019
Similar papers 5
April 9, 2020
In this work we present a formal theoretical framework for assessing and analyzing two classes of malevolent action towards generic Artificial Intelligence (AI) systems. Our results apply to general multi-class classifiers that map from an input space into a decision space, including artificial neural networks used in deep learning applications. Two classes of attacks are considered. The first class involves adversarial examples and concerns the introduction of small perturba...
June 19, 2013
Machine Learning (ML) algorithms are used to train computers to perform a variety of complex tasks and improve with experience. Computers learn how to recognize patterns, make unintended decisions, or react to a dynamic environment. Certain trained machines may be more effective than others because they are based on more suitable ML algorithms or because they were trained through superior training sets. Although ML algorithms are known and publicly released, training sets may...
February 9, 2015
The goal of this paper is to analyze an intriguing phenomenon recently discovered in deep networks, namely their instability to adversarial perturbations (Szegedy et. al., 2014). We provide a theoretical framework for analyzing the robustness of classifiers to adversarial perturbations, and show fundamental upper bounds on the robustness of classifiers. Specifically, we establish a general upper bound on the robustness of classifiers to adversarial perturbations, and then ill...
April 6, 2023
The problem of designing learners that provide guarantees that their predictions are provably correct is of increasing importance in machine learning. However, learning theoretic guarantees have only been considered in very specific settings. In this work, we consider the design and analysis of reliable learners in challenging test-time environments as encountered in modern machine learning problems: namely `adversarial' test-time attacks (in several variations) and `natural'...
April 9, 2016
Traditional classification algorithms assume that training and test data come from similar distributions. This assumption is violated in adversarial settings, where malicious actors modify instances to evade detection. A number of custom methods have been developed for both adversarial evasion attacks and robust learning. We propose the first systematic and general-purpose retraining framework which can: a) boost robustness of an \emph{arbitrary} learning algorithm, in the fa...
March 3, 2022
Machine learning classifiers with high test accuracy often perform poorly under adversarial attacks. It is commonly believed that adversarial training alleviates this issue. In this paper, we demonstrate that, surprisingly, the opposite may be true -- Even though adversarial training helps when enough data is available, it may hurt robust generalization in the small sample size regime. We first prove this phenomenon for a high-dimensional linear classification setting with no...
July 1, 2020
Robustness of machine learning methods is essential for modern practical applications. Given the arms race between attack and defense methods, one may be curious regarding the fundamental limits of any defense mechanism. In this work, we focus on the problem of learning from noise-injected data, where the existing literature falls short by either assuming a specific attack method or by over-specifying the learning problem. We shed light on the information-theoretic limits of ...
July 6, 2019
The use of machine learning and intelligent systems has become an established practice in the realm of malware detection and cyber threat prevention. In an environment characterized by widespread accessibility and big data, the feasibility of malware classification without the use of artificial intelligence-based techniques has been diminished exponentially. Also characteristic of the contemporary realm of automated, intelligent malware detection is the threat of adversarial ...
June 13, 2017
Motivated by safety-critical applications, test-time attacks on classifiers via adversarial examples has recently received a great deal of attention. However, there is a general lack of understanding on why adversarial examples arise; whether they originate due to inherent properties of data or due to lack of training samples remains ill-understood. In this work, we introduce a theoretical framework analogous to bias-variance theory for understanding these effects. We use o...
February 20, 2020
Since the discovery of adversarial examples - the ability to fool modern CNN classifiers with tiny perturbations of the input, there has been much discussion whether they are a "bug" that is specific to current neural architectures and training methods or an inevitable "feature" of high dimensional geometry. In this paper, we argue for examining adversarial examples from the perspective of Bayes-Optimal classification. We construct realistic image datasets for which the Bayes...