ID: 1903.03113

Getting CICY High

March 7, 2019

View on ArXiv

Similar papers 2

Constructing and Machine Learning Calabi-Yau Five-folds

October 24, 2023

88% Match
R. Alawadhi, D. Angella, ... , Gherardini T. Schettini
Machine Learning
Algebraic Geometry

We construct all possible complete intersection Calabi-Yau five-folds in a product of four or less complex projective spaces, with up to four constraints. We obtain $27068$ spaces, which are not related by permutations of rows and columns of the configuration matrix, and determine the Euler number for all of them. Excluding the $3909$ product manifolds among those, we calculate the cohomological data for $12433$ cases, i.e. $53.7 \%$ of the non-product spaces, obtaining $2375...

Find SimilarView on arXiv

Distinguishing Elliptic Fibrations with AI

April 18, 2019

88% Match
Yang-Hui He, Seung-Joo Lee
Algebraic Geometry

We use the latest techniques in machine-learning to study whether from the landscape of Calabi-Yau manifolds one can distinguish elliptically fibred ones. Using the dataset of complete intersections in products of projective spaces (CICY3 and CICY4, totalling about a million manifolds) as a concrete playground, we find that a relatively simple neural network with forward-feeding multi-layers can very efficiently distinguish the elliptic fibrations, much more so than using the...

Find SimilarView on arXiv

Machine learning Calabi-Yau metrics

October 18, 2019

87% Match
Anthony Ashmore, Yang-Hui He, Burt Ovrut
Algebraic Geometry
Machine Learning

We apply machine learning to the problem of finding numerical Calabi-Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on K\"ahler manifolds, we combine conventional curve fitting and machine-learning techniques to numerically approximate Ricci-flat metrics. We show that machine learning is able to predict the Calabi-Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this...

Find SimilarView on arXiv

Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning

December 8, 2020

87% Match
Lara B. Anderson, Mathis Gerdes, James Gray, Sven Krippendorf, ... , Ruehle Fabian
High Energy Physics - Theory

We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string...

Find SimilarView on arXiv

Applying machine learning to the Calabi-Yau orientifolds with string vacua

December 9, 2021

87% Match
Xin Gao, Hao Zou
High Energy Physics - Theory

We use the machine learning technique to search the polytope which can result in an orientifold Calabi-Yau hypersurface and the "naive Type IIB string vacua". We show that neural networks can be trained to give a high accuracy for classifying the orientifold property and vacua based on the newly generated orientifold Calabi-Yau database with $h^{1,1}(X) \leq 6$ arXiv:2111.03078. This indicates the orientifold symmetry may already be encoded in the polytope structure. In the e...

Find SimilarView on arXiv

Identifying equivalent Calabi--Yau topologies: A discrete challenge from math and physics for machine learning

February 15, 2022

87% Match
Vishnu Jejjala, Washington Taylor, Andrew Turner
Machine Learning

We review briefly the characteristic topological data of Calabi--Yau threefolds and focus on the question of when two threefolds are equivalent through related topological data. This provides an interesting test case for machine learning methodology in discrete mathematics problems motivated by physics.

Find SimilarView on arXiv

Calabi-Yau Metrics, Energy Functionals and Machine-Learning

December 20, 2021

86% Match
Anthony Ashmore, Lucille Calmon, ... , Ovrut Burt A.
Machine Learning
Algebraic Geometry

We apply machine learning to the problem of finding numerical Calabi-Yau metrics. We extend previous work on learning approximate Ricci-flat metrics calculated using Donaldson's algorithm to the much more accurate "optimal" metrics of Headrick and Nassar. We show that machine learning is able to predict the K\"ahler potential of a Calabi-Yau metric having seen only a small sample of training data.

Find SimilarView on arXiv

The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning

December 7, 2018

86% Match
Yang-Hui He
Algebraic Geometry
Mathematical Physics
Machine Learning

We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...

Find SimilarView on arXiv

Lectures on Numerical and Machine Learning Methods for Approximating Ricci-flat Calabi-Yau Metrics

December 28, 2023

86% Match
Lara B. Anderson, James Gray, Magdalena Larfors
High Energy Physics - Theory

Calabi-Yau (CY) manifolds play a ubiquitous role in string theory. As a supersymmetry-preserving choice for the 6 extra compact dimensions of superstring compactifications, these spaces provide an arena in which to explore the rich interplay between physics and geometry. These lectures will focus on compact CY manifolds and the long standing problem of determining their Ricci flat metrics. Despite powerful existence theorems, no analytic expressions for these metrics are know...

Find SimilarView on arXiv

Machine Learning in the String Landscape

July 3, 2017

86% Match
Jonathan Carifio, James Halverson, ... , Nelson Brent D.
High Energy Physics - Theory
High Energy Physics - Phenom...

We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank ...

Find SimilarView on arXiv