March 27, 2019
We propose deep reinforcement learning as a model-free method for exploring the landscape of string vacua. As a concrete application, we utilize an artificial intelligence agent known as an asynchronous advantage actor-critic to explore type IIA compactifications with intersecting D6-branes. As different string background configurations are explored by changing D6-brane configurations, the agent receives rewards and punishments related to string consistency conditions and proximity to Standard Model vacua. These are in turn utilized to update the agent's policy and value neural networks to improve its behavior. By reinforcement learning, the agent's performance in both tasks is significantly improved, and for some tasks it finds a factor of O(200) more solutions than a random walker. In one case, we demonstrate that the agent learns a human-derived strategy for finding consistent string models. In another case, where no human-derived strategy exists, the agent learns a genuinely new strategy that achieves the same goal twice as efficiently per unit time. Our results demonstrate that the agent learns to solve various string theory consistency conditions simultaneously, which are phrased in terms of non-linear, coupled Diophantine equations.
Similar papers 1
July 8, 2021
The organising principles underlying the structure of phenomenologically viable string vacua can be accessed by sampling such vacua. In many cases this is prohibited by the computational cost of standard sampling methods in the high dimensional model space. Here we show how this problem can be alleviated using reinforcement learning techniques to explore string flux vacua. We demonstrate in the case of the type IIB flux landscape that vacua with requirements on the expectatio...
November 22, 2021
Identifying string theory vacua with desired physical properties at low energies requires searching through high-dimensional solution spaces - collectively referred to as the string landscape. We highlight that this search problem is amenable to reinforcement learning and genetic algorithms. In the context of flux vacua, we are able to reveal novel features (suggesting previously unidentified symmetries) in the string theory solutions required for properties such as the strin...
August 16, 2021
We use reinforcement learning as a means of constructing string compactifications with prescribed properties. Specifically, we study heterotic SO(10) GUT models on Calabi-Yau three-folds with monad bundles, in search of phenomenologically promising examples. Due to the vast number of bundles and the sparseness of viable choices, methods based on systematic scanning are not suitable for this class of models. By focusing on two specific manifolds with Picard numbers two and thr...
April 17, 2022
The goal of identifying the Standard Model of particle physics and its extensions within string theory has been one of the principal driving forces in string phenomenology. Recently, the incorporation of artificial intelligence in string theory and certain theoretical advancements have brought to light unexpected solutions to mathematical hurdles that have so far hindered progress in this direction. In this review we focus on model building efforts in the context of the $E_8\...
August 19, 2021
In this paper we deploy for the first time Reinforcement-Learning algorithms in the context of the conformal-bootstrap programme to obtain numerical solutions of conformal field theories (CFTs). As an illustration, we use a soft Actor-Critic algorithm and find approximate solutions to the truncated crossing equations of two-dimensional CFTs, successfully identifying well-known theories like the 2D Ising model and the 2D CFT of a compactified scalar. Our methods can perform ef...
March 10, 2020
We use deep reinforcement learning to explore a class of heterotic $SU(5)$ GUT models constructed from line bundle sums over Complete Intersection Calabi Yau (CICY) manifolds. We perform several experiments where A3C agents are trained to search for such models. These agents significantly outperform random exploration, in the most favourable settings by a factor of 1700 when it comes to finding unique models. Furthermore, we find evidence that the trained agents also outperfo...
December 15, 2021
Intersecting branes provide a useful mechanism to construct particle physics models from string theory with a wide variety of desirable characteristics. The landscape of such models can be enormous, and navigating towards regions which are most phenomenologically interesting is potentially challenging. Machine learning techniques can be used to efficiently construct large numbers of consistent and phenomenologically desirable models. In this work we phrase the problem of find...
February 11, 2022
We propose a new technique for classifying 5d Superconformal Field Theories arising from brane webs in Type IIB String Theory, using technology from Machine Learning to identify different webs giving rise to the same theory. We concentrate on webs with three external legs, for which the problem is analogous to that of classifying sets of 7-branes. Training a Siamese Neural Network to determine equivalence between any two brane webs shows an improved performance when webs are ...
March 5, 2024
The landscape of low-energy effective field theories stemming from string theory is too vast for a systematic exploration. However, the meadows of the string landscape may be fertile ground for the application of machine learning techniques. Employing neural network learning may allow for inferring novel, undiscovered properties that consistent theories in the landscape should possess, or checking conjectural statements about alleged characteristics thereof. The aim of this w...
July 9, 2024
We present a methodology for performing scans of BSM parameter spaces with reinforcement learning (RL). We identify a novel procedure using graph neural networks that is capable of exploring spaces of models without the user specifying a fixed particle content, allowing broad classes of BSM models to be explored. In theory, the technique is applicable to nearly any model space with a pre-specified gauge group. We provide a generic procedure by which a suitable graph grammar c...