March 27, 2019
Similar papers 5
June 21, 2017
We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of...
August 2, 2022
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and i...
August 7, 2024
Reinforcement learning (RL), particularly its combination with deep neural networks referred to as deep RL (DRL), has shown tremendous promise across a wide range of applications, suggesting its potential for enabling the development of sophisticated robotic behaviors. Robotics problems, however, pose fundamental difficulties for the application of RL, stemming from the complexity and cost of interacting with the physical world. This article provides a modern survey of DRL fo...
May 15, 2023
Recently, deep reinforcement learning (RL) has been proposed to learn the tractography procedure and train agents to reconstruct the structure of the white matter without manually curated reference streamlines. While the performances reported were competitive, the proposed framework is complex, and little is still known about the role and impact of its multiple parts. In this work, we thoroughly explore the different components of the proposed framework, such as the choice of...
November 24, 2017
Discrete-action algorithms have been central to numerous recent successes of deep reinforcement learning. However, applying these algorithms to high-dimensional action tasks requires tackling the combinatorial increase of the number of possible actions with the number of action dimensions. This problem is further exacerbated for continuous-action tasks that require fine control of actions via discretization. In this paper, we propose a novel neural architecture featuring a sh...
March 21, 2017
In all but the most trivial optimization problems, the structure of the solutions exhibit complex interdependencies between the input parameters. Decades of research with stochastic search techniques has shown the benefit of explicitly modeling the interactions between sets of parameters and the overall quality of the solutions discovered. We demonstrate a novel method, based on learning deep networks, to model the global landscapes of optimization problems. To represent the ...
April 17, 2000
We argue that traditional methods of compactification of string theory make it very difficult to understand how the cosmological constant becomes zero. String inspired models can give zero cosmological constant after fine tuning but since string theory has no free parameters it is not clear that this is allowed. Brane world scenarios on the other hand while they do not answer the question as to why the cosmological constant is zero do actually allow a choice of integration co...
December 27, 2019
In this paper we present a novel technique based on deep reinforcement learning that allows for numerical analytic continuation of integrals that are often encountered in one-loop diagrams in quantum field theory. In order to extract certain quantities of two-point functions, such as spectral densities, mass poles or multi-particle thresholds, it is necessary to perform an analytic continuation of the correlator in question. At one-loop level in Euclidean space, this results ...
July 29, 2021
We present a study of the manners by which Domain information has been incorporated when building models with Neural Networks. Integrating space data is uniquely important to the development of Knowledge understanding model, as well as other fields that aid in understanding information by utilizing the human-machine interface and Reinforcement Learning. On numerous such occasions, machine-based model development may profit essentially from the human information on the world e...
February 20, 2024
Machine learning techniques are increasingly powerful, leading to many breakthroughs in the natural sciences, but they are often stochastic, error-prone, and blackbox. How, then, should they be utilized in fields such as theoretical physics and pure mathematics that place a premium on rigor and understanding? In this Perspective we discuss techniques for obtaining rigor in the natural sciences with machine learning. Non-rigorous methods may lead to rigorous results via conjec...