April 20, 2019
Similar papers 4
February 12, 2002
The random graph of Erdos and Renyi is one of the oldest and best studied models of a network, and possesses the considerable advantage of being exactly solvable for many of its average properties. However, as a model of real-world networks such as the Internet, social networks or biological networks it leaves a lot to be desired. In particular, it differs from real networks in two crucial ways: it lacks network clustering or transitivity, and it has an unrealistic Poissonian...
January 7, 2013
We study a mean field model of a complex network, focusing on edge and triangle densities. Our first result is the derivation of a variational characterization of the entropy density, compatible with the infinite node limit. We then determine the optimizing graphs for small triangle density and a range of edge density, though we can only prove they are local, not global, maxima of the entropy density. With this assumption we then prove that the resulting entropy density must ...
June 15, 2021
Clustering $\unicode{x2013}$ the tendency for neighbors of nodes to be connected $\unicode{x2013}$ quantifies the coupling of a complex network to its latent metric space. In random geometric graphs, clustering undergoes a continuous phase transition, separating a phase with finite clustering from a regime where clustering vanishes in the thermodynamic limit. We prove this geometric-to-nongeometric phase transition to be topological in nature, with anomalous features such as ...
October 14, 2013
Growing network models with both heterogeneity of the nodes and topological constraints can give rise to a rich phase structure. We present a simple model based on preferential attachment with rewiring of the links. Rewiring probabilities are modulated by the negative fitness of the nodes and by the constraint for the network to be a simple graph. At low temperatures and high rewiring rates, this constraint induces a Bose-Einstein condensation of paths of length 2, i.e. a new...
October 3, 2007
Preferential attachment is a central paradigm in the theory of complex networks. In this contribution we consider various generalizations of preferential attachment including for example node removal and edge rewiring. We demonstrate that generalized preferential attachment networks can undergo a topological phase transition. This transition separates networks having a power-law tail degree distribution from those with an exponential tail. The appearance of the phase transiti...
May 4, 2007
A free zero-range process (FRZP) is a simple stochastic process describing the dynamics of a gas of particles hopping between neighboring nodes of a network. We discuss three different cases of increasing complexity: (a) FZRP on a rigid geometry where the network is fixed during the process, (b) FZRP on a random graph chosen from a given ensemble of networks, (c) FZRP on a dynamical network whose topology continuously changes during the process in a way which depends on the c...
September 6, 2004
We study a zero range process on scale-free networks in order to investigate how network structure influences particle dynamics. The zero range process is defined with the particle jumping rate function $p(n)=n^\delta$. We show analytically that a complete condensation occurs when $\delta \leq \delta_c \equiv 1/(\gamma-1)$ where $\gamma$ is the degree distribution exponent of the underlying networks. In the complete condensation, those nodes whose degree is higher than a thre...
February 28, 2005
We present an analytic formalism describing structural properties of random uncorrelated networks with arbitrary degree distributions. The formalism allows to calculate the main network characteristics like: the position of the phase transition at which a giant component first forms, the mean component size below the phase transition, the size of the giant component and the average path length above the phase transition. We apply the approach to classical random graphs of Erd...
September 7, 2020
We present analytical results for the structural evolution of random networks undergoing contraction processes via generic node deletion scenarios, namely, random deletion, preferential deletion and propagating deletion. Focusing on configuration model networks, which exhibit a given degree distribution $P_0(k)$ and no correlations, we show using a rigorous argument that upon contraction the degree distributions of these networks converge towards a Poisson distribution. To th...
April 7, 2013
We investigate a variety of statistical properties associated with the number of distinct degrees that exist in a typical network for various classes of networks. For a single realization of a network with N nodes that is drawn from an ensemble in which the number of nodes of degree k has an algebraic tail, N_k ~ N/k^nu for k>>1, the number of distinct degrees grows as N^{1/nu}. Such an algebraic growth is also observed in scientific citation data. We also determine the N dep...