December 2, 2020
One of the central problems in the interface of deep learning and mathematics is that of building learning systems that can automatically uncover underlying mathematical laws from observed data. In this work, we make one step towards building a bridge between algebraic structures and deep learning, and introduce \textbf{AIDN}, \textit{Algebraically-Informed Deep Networks}. \textbf{AIDN} is a deep learning algorithm to represent any finitely-presented algebraic object with a s...
February 28, 2025
This paper presents a neurosymbolic approach to classifying Galois groups of polynomials, integrating classical Galois theory with machine learning to address challenges in algebraic computation. By combining neural networks with symbolic reasoning we develop a model that outperforms purely numerical methods in accuracy and interpretability. Focusing on sextic polynomials with height $\leq 6$, we analyze a database of 53,972 irreducible examples, uncovering novel distribution...
February 6, 2023
Universality is a key hypothesis in mechanistic interpretability -- that different models learn similar features and circuits when trained on similar tasks. In this work, we study the universality hypothesis by examining how small neural networks learn to implement group composition. We present a novel algorithm by which neural networks may implement composition for any finite group via mathematical representation theory. We then show that networks consistently learn this alg...
March 13, 2022
Along with the proliferation of digital data collected using sensor technologies and a boost of computing power, Deep Learning (DL) based approaches have drawn enormous attention in the past decade due to their impressive performance in extracting complex relations from raw data and representing valuable information. Meanwhile, though, rooted in its notorious black-box nature, the appreciation of DL has been highly debated due to the lack of interpretability. On the one hand,...
March 12, 2021
Tasks like image reconstruction in computer vision, matrix completion in recommender systems and link prediction in graph theory, are well studied in machine learning literature. In this work, we apply a denoising autoencoder-based neural network architecture to the task of completing partial multiplication (Cayley) tables of finite semigroups. We suggest a novel loss function for that task based on the algebraic nature of the semigroup data. We also provide a software packag...
April 15, 2024
What has an Artificial Neural Network (ANN) learned after being successfully trained to solve a task - the set of training items or the relations between them? This question is difficult to answer for modern applied ANNs because of their enormous size and complexity. Therefore, here we consider a low-dimensional network and a simple task, i.e., the network has to reproduce a set of training items identically. We construct the family of solutions analytically and use standard ...
November 13, 2023
Understanding the internal representations learned by neural networks is a cornerstone challenge in the science of machine learning. While there have been significant recent strides in some cases towards understanding how neural networks implement specific target functions, this paper explores a complementary question -- why do networks arrive at particular computational strategies? Our inquiry focuses on the algebraic learning tasks of modular addition, sparse parities, and ...
December 11, 2023
We use the group Fourier transform over the symmetric group $S_n$ to reverse engineer a 1-layer feedforward network that has "grokked" the multiplication of $S_5$ and $S_6$. Each model discovers the true subgroup structure of the full group and converges on circuits that decompose the group multiplication into the multiplication of the group's conjugate subgroups. We demonstrate the value of using the symmetries of the data and models to understand their mechanisms and hold u...
December 11, 2023
This paper explores the application of automated planning to automated theorem proving, which is a branch of automated reasoning concerned with the development of algorithms and computer programs to construct mathematical proofs. In particular, we investigate the use of planning to construct elementary proofs in abstract algebra, which provides a rigorous and axiomatic framework for studying algebraic structures such as groups, rings, fields, and modules. We implement basic i...
November 25, 2021
Is intelligence realized by connectionist or classicist? While connectionist approaches have achieved superhuman performance, there has been growing evidence that such task-specific superiority is particularly fragile in systematic generalization. This observation lies in the central debate between connectionist and classicist, wherein the latter continually advocates an algebraic treatment in cognitive architectures. In this work, we follow the classicist's call and propose ...