September 6, 2020
In the context of the $\mathrm{SU(3)_c \otimes SU(3)_L \otimes U(1)_X \otimes U(1)_{N}}$ (3-3-1-1) extension of the standard model, we show how the spontaneous breaking of the gauge symmetry gives rise to a residual symmetry which accounts for dark matter stability and small neutrino masses in a scotogenic fashion. As a special feature, the gauge structure implies that one of the light neutrinos is massless and, as a result, there is a lower bound for the $0\nu\beta\beta$ dec...
August 15, 2016
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_\mu - L_\tau$ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The $L_\mu - L_\tau$ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The $L_\mu - L_\tau$ gauge symmetry is known t...
April 22, 2021
We explore the parameter space of a U(1) extension of the standard model -- also called the super-weak model -- from the point of view of explaining the observed dark matter energy density in the Universe. The new particle spectrum contains a complex scalar singlet and three right-handed neutrinos, among which the lightest one is the dark matter candidate. We explore both freeze-in and freeze-out mechanisms of dark matter production. In both cases, we find regions in the plan...
February 28, 2019
We explore the possibility that dark matter interactions with Standard Model particles are dominated by interactions with neutrinos. We examine whether it is possible to construct such a scenario in a gauge invariant manner. We first study the coupling of dark matter to the full lepton doublet and confirm that this generally leads to the dark matter phenomenology being dominated by interactions with charged leptons. We then explore two different implementations of the neutrin...
November 18, 2024
Amongst the issues plaguing the Standard Model (SM) are questions pertaining to neutrino masses and mixings, the anomalous magnetic moment of the electron and muon and the problem of a suitable dark matter (DM) candidate. All the three issues can be addressed at once by extending the SM with two generations of vector-like fermions and an inert scalar doublet, all odd under a Z2 symmetry. The light neutrino masses and mixings are generated radiatively while maintaining consist...
May 30, 2014
The origin of neutrino masses and the nature of dark matter are two of the most pressing open questions of the modern astro-particle physics. We consider here the possibility that these two problems are related, and review some theoretical scenarios which offer common solutions. A simple possibility is that the dark matter particle emerges in minimal realizations of the see-saw mechanism, like in the majoron and sterile neutrino scenarios. We present the theoretical motivatio...
August 26, 2014
In this paper we propose a possible explanation of the active neutrino Majorana masses with the TeV scale new physics which also provide a dark matter candidate. We extend the Standard Model (SM) with a local U(1)' symmetry and introduce a seesaw relation for the vacuum expectation values (VEVs) of the exotic scalar singlets, which break the U(1)' spontaneously. The larger VEV is responsible for generating the Dirac mass term of the heavy neutrinos, while the smaller for the ...
June 7, 2018
We explore the constraints and phenomenology of possibly the simplest scenario that could account at the same time for the active neutrino masses and the dark matter in the Universe within a gauged $U(1)_{B-L}$ symmetry, namely right-handed neutrino dark matter. We find that null searches from lepton and hadron colliders require dark matter with a mass below 900 GeV to annihilate through a resonance. Additionally, the very strong constraints from high-energy dilepton searches...
March 3, 2022
Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, wit...
December 19, 2012
A minimal extension of the standard model to naturally generate small neutrino masses and provide a dark matter candidate is proposed. The dark matter particle is part of a new scalar doublet field that plays a crucial role in radiatively generating neutrino masses. The symmetry that stabilizes the dark matter also suppresses neutrino masses to appear first at three-loop level. Without the need of right-handed neutrinos or other very heavy new fields, this offers an attractiv...