May 17, 2019
The paper introduces methods of adaptation of multilingual masked language models for a specific language. Pre-trained bidirectional language models show state-of-the-art performance on a wide range of tasks including reading comprehension, natural language inference, and sentiment analysis. At the moment there are two alternative approaches to train such models: monolingual and multilingual. While language specific models show superior performance, multilingual models allow to perform a transfer from one language to another and solve tasks for different languages simultaneously. This work shows that transfer learning from a multilingual model to monolingual model results in significant growth of performance on such tasks as reading comprehension, paraphrase detection, and sentiment analysis. Furthermore, multilingual initialization of monolingual model substantially reduces training time. Pre-trained models for the Russian language are open sourced.
Similar papers 1
September 19, 2023
Nowadays, Transformer language models (LMs) represent a fundamental component of the NLP research methodologies and applications. However, the development of such models specifically for the Russian language has received little attention. This paper presents a collection of 13 Russian Transformer LMs based on the encoder (ruBERT, ruRoBERTa, ruELECTRA), decoder (ruGPT-3), and encoder-decoder (ruT5, FRED-T5) models in multiple sizes. Access to these models is readily available ...
May 22, 2024
There has been a surge in the development of various Large Language Models (LLMs). However, text generation for languages other than English often faces significant challenges, including poor generation quality and the reduced computational performance due to the disproportionate representation of tokens in model's vocabulary. In this work, we address these issues and introduce Vikhr, a new state-of-the-art open-source instruction-tuned LLM designed specifically for the Russi...
October 29, 2020
In this paper, we introduce an advanced Russian general language understanding evaluation benchmark -- RussianGLUE. Recent advances in the field of universal language models and transformers require the development of a methodology for their broad diagnostics and testing for general intellectual skills - detection of natural language inference, commonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first time, a benc...
February 28, 2021
The success of pre-trained transformer language models has brought a great deal of interest on how these models work, and what they learn about language. However, prior research in the field is mainly devoted to English, and little is known regarding other languages. To this end, we introduce RuSentEval, an enhanced set of 14 probing tasks for Russian, including ones that have not been explored yet. We apply a combination of complementary probing methods to explore the distri...
December 5, 2023
Latest instruction-tuned large language models (LLM) show great results on various tasks, however, they often face performance degradation for non-English input. There is evidence that the reason lies in inefficient tokenization caused by low language representation in pre-training data which hinders the comprehension of non-English instructions, limiting the potential of target language instruction-tuning. In this work we investigate the possibility of addressing the issue w...
July 1, 2021
Multilingual Language Models (\MLLMs) such as mBERT, XLM, XLM-R, \textit{etc.} have emerged as a viable option for bringing the power of pretraining to a large number of languages. Given their success in zero-shot transfer learning, there has emerged a large body of work in (i) building bigger \MLLMs~covering a large number of languages (ii) creating exhaustive benchmarks covering a wider variety of tasks and languages for evaluating \MLLMs~ (iii) analysing the performance of...
May 3, 2021
Recent work has demonstrated the effectiveness of cross-lingual language model pretraining for cross-lingual understanding. In this study, we present the results of two larger multilingual masked language models, with 3.5B and 10.7B parameters. Our two new models dubbed XLM-R XL and XLM-R XXL outperform XLM-R by 1.8% and 2.4% average accuracy on XNLI. Our model also outperforms the RoBERTa-Large model on several English tasks of the GLUE benchmark by 0.3% on average while han...
May 4, 2022
Today, transformer language models serve as a core component for majority of natural language processing tasks. Industrial application of such models requires minimization of computation time and memory footprint. Knowledge distillation is one of approaches to address this goal. Existing methods in this field are mainly focused on reducing the number of layers or dimension of embeddings/hidden representations. Alternative option is to reduce the number of tokens in vocabulary...
July 6, 2019
This paper proposes a novel multilingual multistage fine-tuning approach for low-resource neural machine translation (NMT), taking a challenging Japanese--Russian pair for benchmarking. Although there are many solutions for low-resource scenarios, such as multilingual NMT and back-translation, we have empirically confirmed their limited success when restricted to in-domain data. We therefore propose to exploit out-of-domain data through transfer learning, by using it to first...
January 9, 2024
Over the past few years, one of the most notable advancements in AI research has been in foundation models (FMs), headlined by the rise of language models (LMs). As the models' size increases, LMs demonstrate enhancements in measurable aspects and the development of new qualitative features. However, despite researchers' attention and the rapid growth in LM application, the capabilities, limitations, and associated risks still need to be better understood. To address these is...