ID: 1905.07328

Work fluctuations in slow processes: quantum signatures and optimal control

May 17, 2019

View on ArXiv
Harry J. D. Miller, Matteo Scandi, Janet Anders, Martí Perarnau-Llobet
Quantum Physics
Condensed Matter
Statistical Mechanics

An important result in classical stochastic thermodynamics is the work fluctuation--dissipation relation (FDR), which states that the dissipated work done along a slow process is proportional to the resulting work fluctuations. Here we show that slowly driven quantum systems violate this FDR whenever quantum coherence is generated along the protocol, and derive a quantum generalisation of the work FDR. The additional quantum terms in the FDR are found to lead to a non-Gaussian work distribution. Fundamentally, our result shows that quantum fluctuations prohibit finding slow protocols that minimise both dissipation and fluctuations simultaneously, in contrast to classical slow processes. Instead, we develop a quantum geometric framework to find processes with an optimal trade-off between the two quantities.

Similar papers 1