ID: 1906.08730

Machine Learning Line Bundle Cohomology

June 20, 2019

View on ArXiv

Similar papers 2

Machine learning the dimension of a Fano variety

September 11, 2023

84% Match
Tom Coates, Alexander M. Kasprzyk, Sara Veneziale
Algebraic Geometry
Machine Learning

Fano varieties are basic building blocks in geometry - they are `atomic pieces' of mathematical shapes. Recent progress in the classification of Fano varieties involves analysing an invariant called the quantum period. This is a sequence of integers which gives a numerical fingerprint for a Fano variety. It is conjectured that a Fano variety is uniquely determined by its quantum period. If this is true, one should be able to recover geometric properties of a Fano variety dire...

Find SimilarView on arXiv

Deep-Learning the Landscape

June 8, 2017

84% Match
Yang-Hui He
Algebraic Geometry
Machine Learning

We propose a paradigm to deep-learn the ever-expanding databases which have emerged in mathematical physics and particle phenomenology, as diverse as the statistics of string vacua or combinatorial and algebraic geometry. As concrete examples, we establish multi-layer neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi-Yau manifolds and vector bundles, to quiver representations for gauge theories. We find that ev...

Find SimilarView on arXiv

Line bundle cohomologies on CICYs with Picard number two

June 2, 2019

84% Match
Magdalena Larfors, Robin Schneider
Algebraic Geometry

We analyse line bundle cohomologies on all favourable co-dimension two Complete Intersection Calabi Yau (CICY) manifolds of Picard number two. Our results provide further evidence that the cohomology dimensions of such line bundles are given by analytic expressions, which change between regions in the line bundle charge space. This agrees with recent observations of CY line bundles presented in Refs [1,2]. In many cases, the expressions for bundle cohomology dimensions are po...

Find SimilarView on arXiv

Distinguishing Elliptic Fibrations with AI

April 18, 2019

84% Match
Yang-Hui He, Seung-Joo Lee
Algebraic Geometry

We use the latest techniques in machine-learning to study whether from the landscape of Calabi-Yau manifolds one can distinguish elliptically fibred ones. Using the dataset of complete intersections in products of projective spaces (CICY3 and CICY4, totalling about a million manifolds) as a concrete playground, we find that a relatively simple neural network with forward-feeding multi-layers can very efficiently distinguish the elliptic fibrations, much more so than using the...

Find SimilarView on arXiv

Deep Learning Calabi-Yau four folds with hybrid and recurrent neural network architectures

May 27, 2024

84% Match
H. L. Dao
Machine Learning
Algebraic Geometry

In this work, we report the results of applying deep learning based on hybrid convolutional-recurrent and purely recurrent neural network architectures to the dataset of almost one million complete intersection Calabi-Yau four-folds (CICY4) to machine-learn their four Hodge numbers $h^{1,1}, h^{2,1}, h^{3,1}, h^{2,2}$. In particular, we explored and experimented with twelve different neural network models, nine of which are convolutional-recurrent (CNN-RNN) hybrids with the R...

Find SimilarView on arXiv

Machine Learning in Physics and Geometry

March 22, 2023

83% Match
Yang-Hui He, Elli Heyes, Edward Hirst
Algebraic Geometry
Mathematical Physics

We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to hel...

Find SimilarView on arXiv
Jiakang Bao, Yang-Hui He, Edward Hirst, Johannes Hofscheier, ... , Majumder Suvajit
Algebraic Geometry

We describe how simple machine learning methods successfully predict geometric properties from Hilbert series (HS). Regressors predict embedding weights in projective space to ${\sim}1$ mean absolute error, whilst classifiers predict dimension and Gorenstein index to $>90\%$ accuracy with ${\sim}0.5\%$ standard error. Binary random forest classifiers managed to distinguish whether the underlying HS describes a complete intersection with high accuracies exceeding $95\%$. Neura...

Learning knot invariants across dimensions

November 30, 2021

83% Match
Jessica Craven, Mark Hughes, ... , Kar Arjun
Machine Learning
Geometric Topology

We use deep neural networks to machine learn correlations between knot invariants in various dimensions. The three-dimensional invariant of interest is the Jones polynomial $J(q)$, and the four-dimensional invariants are the Khovanov polynomial $\text{Kh}(q,t)$, smooth slice genus $g$, and Rasmussen's $s$-invariant. We find that a two-layer feed-forward neural network can predict $s$ from $\text{Kh}(q,-q^{-4})$ with greater than $99\%$ accuracy. A theoretical explanation for ...

Find SimilarView on arXiv

Calabi-Yau Four/Five/Six-folds as $\mathbb{P}^n_\textbf{w}$ Hypersurfaces: Machine Learning, Approximation, and Generation

November 28, 2023

83% Match
Edward Hirst, Tancredi Schettini Gherardini
Algebraic Geometry
Machine Learning

Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...

Find SimilarView on arXiv

Machine Learning Kreuzer--Skarke Calabi--Yau Threefolds

December 16, 2021

83% Match
Per Berglund, Ben Campbell, Vishnu Jejjala
Machine Learning
Algebraic Geometry

Using a fully connected feedforward neural network we study topological invariants of a class of Calabi--Yau manifolds constructed as hypersurfaces in toric varieties associated with reflexive polytopes from the Kreuzer--Skarke database. In particular, we find the existence of a simple expression for the Euler number that can be learned in terms of limited data extracted from the polytope and its dual.

Find SimilarView on arXiv