August 31, 2019
Similar papers 2
March 12, 2015
2D materials are well-known to exhibit interesting phenomena due to quantum confinement. Here, we show that quantum confinement, together with structural anisotropy, result in an electric-field-tunable Dirac cone in 2D black phosphorus. Using density functional theory calculations, we find that an electric field, E_ext, applied normal to a 2D black phosphorus thin film, can reduce the direct band gap of few-layer black phosphorus, resulting in an insulator-to-metal transition...
February 9, 2023
Hydrogen, a simple and magic element, has attracted increasing attention for its effective incorporation within solids and powerful manipulation of electronic states. Here, we show that hydrogenation tackles common problems in two-dimensional borophene, e.g., stability and applicability. As a prominent example, a ladder-like boron hydride sheet, named as 2D ladder polyborane, achieves the desired outcome, enjoying the cleanest scenario with an anisotropic and tilted Dirac con...
April 27, 2017
We have theoretically investigated the intrinsic carrier mobility in semimetals with distorted Dirac cones under both longitudinal and transverse acoustic phonon scattering. An analytic formula for the carrier mobility was obtained. It shows that tilting significantly reduces the mobility. The theory was then applied to 8B-Pmmn borophene and borophane (fully hydrogenated borophene), both of which have tilted Dirac cones. The predicted carrier mobilities in 8B-Pmmn borophene a...
January 17, 2018
Two-dimensional (2D) structures of boron atoms so called borophene, have recently attracted remarkable attention. In a latest exciting experimental study, a hydrogenated borophene structure was realized. Motivated by this success, we conducted extensive first-principles calculations to explore the mechanical, thermal conduction, electronic and optical responses of borophene hydride. The mechanical response of borophene hydride was found to be anisotropic in which it can yield...
September 12, 2016
We study the electric-field tunable electronic properties of phosphorene thin films, using the framework of density functional theory. We show that phosphorene thin films offer a versatile material platform to study two dimensional Dirac fermions on application of a transverse electric field. Increasing the strength of the transverse electric field beyond a certain critical value in phosphorene leads to the formation of two symmetry protected gapless Dirac fermions states wit...
January 29, 2016
Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of carbon phosphide (CP) monolayer consisted of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to ...
March 19, 2019
We propose a simple rule for finding Dirac cone electronic states in solids, that is neglecting those lattice atoms inert to the particular electronic bands, and pursuing the two dimensional (2D) graphene-like quasi-atom lattices with s- and p-bindings by considering the equivalent atom groups in the unit cell as quasi-atoms. With CsPbBr$_3$ and Cs$_3$Bi$_2$Br$_9$ bilayers as examples, we demonstrate the effectiveness and generality of this rule with the density functional th...
April 30, 2017
We simulate boron on Pb(110) surface by using ab initio evolutionary methodology. Interestingly, the two-dimensional (2D) Dirac Pmmn boron can be formed because of good lattice matching. Unexpectedly, by increasing the thickness of 2D boron, a three-bonded graphene-like structure (P2_1/c boron) was revealed to possess double anisotropic Dirac cones. It is 20 meV/atom lower in energy than the Pmmn structure, indicating the most stable 2D boron with particular Dirac cones. The ...
April 22, 2016
We predict by first principles calculations that the recently prepared borophene is a pristine two-dimensional (2D) monolayer superconductor, in which the superconductivity can be significantly enhanced by strain and charge carrier doping. The intrinsic metallic ground state with high density of states at Fermi energy and strong Fermi surface nesting lead to sizeable electron-phonon coupling, making the freestanding borophene superconduct with $T_c$ close to 19.0 K. The tensi...
February 9, 2021
Two-dimensional (2D) materials with Dirac cones have been intrigued by many unique properties, i.e., the effective masses of carriers close to zero and Fermi velocity of ultrahigh, which yields a great possibility in high-performance electronic devices. In this work, using first-principles calculations, we have predicted a new Dirac cone material of silicon carbide with the new stoichiometries, named g-SiC6 monolayer, which is composed of sp2 hybridized with a graphene-like s...