November 18, 2019
We prove that for any prime $p$ there is a divisible by $p$ number $q = O(p^{30})$ such that for a certain positive integer $a$ coprime with $q$ the ratio $a/q$ has bounded partial quotients. In the other direction we show that there is an absolute constant $C>0$ such that for any prime $p$ exist divisible by $p$ number $q = O(p^{C})$ and a number $a$, $a$ coprime with $q$ such that all partial quotients of the ratio $a/q$ are bounded by two.
Similar papers 1
December 30, 2022
We prove in particular that for any sufficiently large prime $p$ there is $1\le a<p$ such that all partial quotients of $a/p$ are bounded by $O(\log p/\log \log p)$. For composite denominators a similar result is obtained. This improves the well--known Korobov bound concerning Zaremba's conjecture from the theory of continued fractions.
March 2, 2011
It is shown that there is a constant A and a density one subset S of the positive integers, such that for all q in S there is some 1<=p<q, (p, q)=1, so that p/q has all its partial quotients bounded by A.
October 15, 2023
Famous Zaremba's conjecture (1971) states that for each positive integer $q\geq2$, there exists positive integer $1\leq a <q$, coprime to $q$, such that if you expand a fraction $a/q$ into a continued fraction $a/q=[a_1,\ldots,a_n]$, all of the coefficients $a_i$'s are bounded by some absolute constant $\mathfrak k$, independent of $q$. Zaremba conjectured that this should hold for $\mathfrak k=5$. In 1986, Niederreiter proved Zaremba's conjecture for numbers of the form $q=2...
March 16, 2013
Zaremba's conjecture (1971) states that every positive integer number $d$ can be represented as a denominator (continuant) of a finite continued fraction $\frac{b}{d}=[d_1,d_2,...,d_{k}],$ with all partial quotients $d_1,d_2,...,d_{k}$ being bounded by an absolute constant $A.$ Recently (in 2011) several new theorems concerning this conjecture were proved by Bourgain and Kontorovich. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with A=50 ...
February 21, 2012
We discuss several open problems in Diophantine approximation. Among them there are famous Littlewood's and Zaremba's conjectures as well as some new and not so famous problems.
October 27, 2015
Let $\F_p$ be the field of residue classes modulo a large prime $p$. The present paper is devoted to the problem of representability of elements of $\F_p$ as sums of fractions of the form $x/y$ with $x,y$ from short intervals of $\F_p$.
December 11, 2022
In this article, we extend our recent work on a Bombieri-Vinogradov-type theorem for sparse sets of prime powers $p^N\le x^{1/4-\varepsilon}$ with $p\le (\log x)^C$ to sparse sets of moduli $s\le x^{1/3-\varepsilon}$ with radical rad$(s)\le x^{9/40}$. To derive our result, we combine our previous method with a Bombieri-Vinogradov-type theorem for general moduli $s\le x^{9/40}$ obtained by Roger Baker.
July 2, 2014
Let $\alpha$ and $\beta$ be irrational real numbers and $0<\F<1/30$. We prove a precise estimate for the number of positive integers $q\leq Q$ that satisfy $\|q\alpha\|\cdot\|q\beta\|<\F$. If we choose $\F$ as a function of $Q$ we get asymptotics as $Q$ gets large, provided $\F Q$ grows quickly enough in terms of the (multiplicative) Diophantine type of $(\alpha,\beta)$, e.g., if $(\alpha,\beta)$ is a counterexample to Littlewood's conjecture then we only need that $\F Q$ ten...
July 27, 2016
For $A \subseteq \mathbb{N}$, the question of when $R(A) = \{a/a' : a, a' \in A\}$ is dense in the positive real numbers $\mathbb{R}_+$ has been examined by many authors over the years. In contrast, the $p$-adic setting is largely unexplored. We investigate conditions under which $R(A)$ is dense in the $p$-adic numbers. Techniques from elementary, algebraic, and analytic number theory are employed in this endeavor. We also pose many open questions that should be of general in...
January 7, 2019
In this paper we obtain a sharp upper bound for the number of solutions to a certain diophantine inequality involving fractions with power denominator. This problem is motivated by a conjecture of Zhao concerning the spacing of such fractions in short intervals and the large sieve for power modulus. As applications of our estimate we show Zhao's conjecture is true except for a set of small measure and give a new $\ell_1 \rightarrow \ell_2$ large sieve inequality for power mod...