December 28, 2019
Similar papers 2
July 28, 2020
Artificial neural networks have been proposed as potential algorithms that could benefit from being implemented and run on quantum computers. In particular, they hold promise to greatly enhance Artificial Intelligence tasks, such as image elaboration or pattern recognition. The elementary building block of a neural network is an artificial neuron, i.e. a computational unit performing simple mathematical operations on a set of data in the form of an input vector. Here we show ...
July 8, 2021
Artificial neural networks have achieved great success in many fields ranging from image recognition to video understanding. However, its high requirements for computing and memory resources have limited further development on processing big data with high dimensions. In recent years, advances in quantum computing show that building neural networks on quantum processors is a potential solution to this problem. In this paper, we propose a novel neural network model named Quant...
February 22, 2024
This paper provides an introduction to quantum machine learning, exploring the potential benefits of using quantum computing principles and algorithms that may improve upon classical machine learning approaches. Quantum computing utilizes particles governed by quantum mechanics for computational purposes, leveraging properties like superposition and entanglement for information representation and manipulation. Quantum machine learning applies these principles to enhance class...
July 3, 2023
This paper focuses on the construction of a general parametric model that can be implemented executing multiple swap tests over few qubits and applying a suitable measurement protocol. The model turns out to be equivalent to a two-layer feedforward neural network which can be realized combining small quantum modules. The advantages and the perspectives of the proposed quantum method are discussed.
June 26, 2020
Quantum neuromorphic computing physically implements neural networks in brain-inspired quantum hardware to speed up their computation. In this perspective article, we show that this emerging paradigm could make the best use of the existing and near future intermediate size quantum computers. Some approaches are based on parametrized quantum circuits, and use neural network-inspired algorithms to train them. Other approaches, closer to classical neuromorphic computing, take ad...
February 27, 2019
Neural networks enjoy widespread success in both research and industry and, with the imminent advent of quantum technology, it is now a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose the use of quantum neurons as a building block for quantum feed-forward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function and provide both clas...
November 23, 2022
This paper presents, via an explicit example with a real-world dataset, a hands-on introduction to the field of quantum machine learning (QML). We focus on the case of learning with a single qubit, using data re-uploading techniques. After a discussion of the relevant background in quantum computing and machine learning we provide a thorough explanation of the data re-uploading models that we consider, and implement the different proposed formulations in toy and real-world da...
October 10, 2018
A new paradigm of quantum computing, namely, soft quantum computing, is proposed for nonclassical computation using real world quantum systems with naturally occurring environment-induced decoherence and dissipation. As a specific example of soft quantum computing, we suggest a quantum neural network, where the neurons connect pairwise via the "controlled Kraus operations", hoping to pave an easier and more realistic way to quantum artificial intelligence and even to better u...
December 1, 2017
Quantum information technologies provide promising applications in communication and computation, while machine learning has become a powerful technique for extracting meaningful structures in 'big data'. A crossover between quantum information and machine learning represents a new interdisciplinary area stimulating progresses in both fields. Traditionally, a quantum state is characterized by quantum state tomography, which is a resource-consuming process when scaled up. Here...
July 6, 2021
In recent years, Quantum Computing witnessed massive improvements in terms of available resources and algorithms development. The ability to harness quantum phenomena to solve computational problems is a long-standing dream that has drawn the scientific community's interest since the late 80s. In such a context, we propose our contribution. First, we introduce basic concepts related to quantum computations, and then we explain the core functionalities of technologies that imp...