December 28, 2019
Similar papers 5
May 30, 2023
As the rapidly evolving field of machine learning continues to produce incredibly useful tools and models, the potential for quantum computing to provide speed up for machine learning algorithms is becoming increasingly desirable. In particular, quantum circuits in place of classical convolutional filters for image detection-based tasks are being investigated for the ability to exploit quantum advantage. However, these attempts, referred to as quantum convolutional neural net...
May 27, 2021
Quantum machine learning emerges from the symbiosis of quantum mechanics and machine learning. In particular, the latter gets displayed in quantum sciences as: (i) the use of classical machine learning as a tool applied to quantum physics problems, (ii) or the use of quantum resources such as superposition, entanglement, or quantum optimization protocols to enhance the performance of classification and regression tasks compare to their classical counterparts. This paper revie...
November 24, 2021
The utility of classical neural networks as universal approximators suggests that their quantum analogues could play an important role in quantum generalizations of machine-learning methods. Inspired by the proposal in [Torrontegui and Garc\'ia-Ripoll 2019 EPL 125 30004], we demonstrate a superconducting qubit implementation of an adiabatic controlled gate, which generalizes the action of a classical perceptron as the basic building block of a quantum neural network. We show ...
August 4, 2022
Many recent machine learning tasks resort to quantum computing to improve classification accuracy and training efficiency by taking advantage of quantum mechanics, known as quantum machine learning (QML). The variational quantum circuit (VQC) is frequently utilized to build a quantum neural network (QNN), which is a counterpart to the conventional neural network. Due to hardware limitations, however, current quantum devices only allow one to use few qubits to represent data a...
December 10, 2014
In recent years, deep learning has had a profound impact on machine learning and artificial intelligence. At the same time, algorithms for quantum computers have been shown to efficiently solve some problems that are intractable on conventional, classical computers. We show that quantum computing not only reduces the time required to train a deep restricted Boltzmann machine, but also provides a richer and more comprehensive framework for deep learning than classical computin...
December 5, 2022
Deep learning and quantum computing have achieved dramatic progresses in recent years. The interplay between these two fast-growing fields gives rise to a new research frontier of quantum machine learning. In this work, we report the first experimental demonstration of training deep quantum neural networks via the backpropagation algorithm with a six-qubit programmable superconducting processor. In particular, we show that three-layer deep quantum neural networks can be train...
April 29, 2020
We discuss the synergetic connection between quantum computing and artificial intelligence. After surveying current approaches to quantum artificial intelligence and relating them to a formal model for machine learning processes, we deduce four major challenges for the future of quantum artificial intelligence: (i) Replace iterative training with faster quantum algorithms, (ii) distill the experience of larger amounts of data into the training process, (iii) allow quantum and...
November 28, 2016
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Since quantum systems produce counter-intuitive patterns believed not to be efficiently produced by classical systems, it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement concrete quantum softwa...
December 8, 2022
Within this decade, quantum computers are predicted to outperform conventional computers in terms of processing power and have a disruptive effect on a variety of business sectors. It is predicted that the financial sector would be one of the first to benefit from quantum computing both in the short and long terms. In this research work we use Hybrid Quantum Neural networks to present a quantum machine learning approach for Continuous variable prediction.
June 9, 2021
The core of quantum machine learning is to devise quantum models with good trainability and low generalization error bound than their classical counterparts to ensure better reliability and interpretability. Recent studies confirmed that quantum neural networks (QNNs) have the ability to achieve this goal on specific datasets. With this regard, it is of great importance to understand whether these advantages are still preserved on real-world tasks. Through systematic numerica...