March 16, 2020
Similar papers 3
September 24, 2018
We estimate $\delta$-invariants of some singular del Pezzo surfaces with quotient singularities, which we studied ten years ago. As a result, we show that each of these surfaces admits an orbifold K\"ahler--Einstein metric.
October 4, 2007
We unify and generalize formulas obtained by Campillo, Delgado and Gusein-Zade in their series of articles. Positive results are established for rational and minimally elliptic singularities. By examples and counterexamples we also try to find the `limits' of these identities. Connections with the Seiberg-Witten Invariant Conjecture and Semigroup Density Conjecture are discussed.
October 21, 2023
In this paper, we consider deformations of singular complex curves on complex surfaces. Despite the fundamental nature of the problem, little seems to be known for curves on general surfaces. Let $C\subset S$ be a complete integral curve on a smooth surface. Let $\tilde C$ be a partial normalization of $C$, and $\varphi\colon \tilde C\to S$ be the induced map. In this paper, we consider deformations of $\varphi$. The problem of the existence of deformations will be reduced to...
March 30, 2009
The aim of this paper is to introduce and investigate the Poincar\'e series associated with the Weierstra{\ss} semigroup of one and two rational points at a (not necessarily irreducible) non-singular projective algebraic curve defined over a finite field, as well as to describe their functional equations in the case of an affine complete intersection.
January 30, 2004
We consider the polar curves $\PSO$ arising from generic projections of a germ $(S,0)$ of complex surface singularity onto $\C^2$. Taking $(S,0)$ to be a minimal singularity of normal surface (i.e. a rational singularity with reduced tangent cone), we give the $\delta$-invariant of these polar curves, as well as the equisingularity-type of their generic plane projections, which are also the discriminants of generic projections of $(S,0)$. These two (equisingularity)-data for ...
We compute the $\delta$-invariant of a curve singularity parameterized by generic sparse polynomials. We apply this to describe topological types of generic singularities of sparse resultants and ``algebraic knot diagrams'' (i.e. generic algebraic spatial curve projections). Our approach is based on some new results on zero loci of Schur polynomials, on transversality properties of maps defined by sparse polynomials, and on a new refinement of the notion of tropicalization ...
May 10, 2002
We prove two formulae which express the Alexander polynomial $\Delta^C$ of several variables of a plane curve singularity $C$ in terms of the ring ${\cal O}_{C}$ of germs of analytic functions on the curve. One of them expresses $\Delta^C$ in terms of dimensions of some factors corresponding to a (multi-indexed) filtration on the ring ${\cal O}_{C}$. The other one gives the coefficients of the Alexander polynomial $\Delta^C$ as Euler characteristics of some explicitly describ...
March 19, 2018
In this work we study neighborhoods of curves in surfaces with positive self-intersection that can be embeeded as a germ of neighborhood of a curve on the projective plane.
May 11, 2021
In this work we define some map-germs, called elementary joins, for the purpose of producing new ${\mathcal A}$-finite map-germs from them. In particular, we describe a general form of an ${\mathcal A}$-finite monomial map from $(\mathbb{C}^n,0)$ to $(\mathbb{C}^{p},0)$ for $p\geq 2n$ of any corank in terms of elementary join maps. Our main tools are the delta invariant and some invariants of curves.
January 12, 2009
This article, based on the talk given by one of the authors at the Pierrettefest in Castro Urdiales in June 2008, is an overview of a number of recent results on the polar invariants of plane curve singularities.