October 26, 2021
The immensity of the string landscape and the difficulty of identifying solutions that match the observed features of particle physics have raised serious questions about the predictive power of string theory. Modern methods of optimisation and search can, however, significantly improve the prospects of constructing the standard model in string theory. In this paper we scrutinise a corner of the heterotic string landscape consisting of compactifications on Calabi-Yau three-fo...
October 16, 2023
Machine learning is a rapidly growing field with the potential to revolutionize many areas of science, including physics. This review provides a brief overview of machine learning in physics, covering the main concepts of supervised, unsupervised, and reinforcement learning, as well as more specialized topics such as causal inference, symbolic regression, and deep learning. We present some of the principal applications of machine learning in physics and discuss the associated...
November 27, 2021
This article is intended for physical scientists who wish to gain deeper insights into machine learning algorithms which we present via the domain they know best, physics. We begin with a review of two energy-based machine learning algorithms, Hopfield networks and Boltzmann machines, and their connection to the Ising model. This serves as a foundation to understand the phenomenon of learning more generally. Equipped with this intuition we then delve into additional, more "pr...
March 29, 2021
We present an approach to cosmology in which the Universe learns its own physical laws. It does so by exploring a landscape of possible laws, which we express as a certain class of matrix models. We discover maps that put each of these matrix models in correspondence with both a gauge/gravity theory and a mathematical model of a learning machine, such as a deep recurrent, cyclic neural network. This establishes a correspondence between each solution of the physical theory and...
February 12, 2020
Dualities are widely used in quantum field theories and string theory to obtain correlation functions at high accuracy. Here we present examples where dual data representations are useful in supervised classification, linking machine learning and typical tasks in theoretical physics. We then discuss how such beneficial representations can be enforced in the latent dimension of neural networks. We find that additional contributions to the loss based on feature separation, feat...
May 27, 2024
In this work, we report the results of applying deep learning based on hybrid convolutional-recurrent and purely recurrent neural network architectures to the dataset of almost one million complete intersection Calabi-Yau four-folds (CICY4) to machine-learn their four Hodge numbers $h^{1,1}, h^{2,1}, h^{3,1}, h^{2,2}$. In particular, we explored and experimented with twelve different neural network models, nine of which are convolutional-recurrent (CNN-RNN) hybrids with the R...
March 7, 2022
In this paper we propose ways to incorporate Machine Learning training outputs into a study of statistical significance. We describe these methods in supervised classification tasks using a CNN and a DNN output, and unsupervised learning based on a VAE. As use cases, we consider two physical situations where Machine Learning are often used: high-$p_T$ hadronic activity, and boosted Higgs in association with a massive vector boson.
July 9, 2020
One of the goals of current particle physics research is to obtain evidence for new physics, that is, physics beyond the Standard Model (BSM), at accelerators such as the Large Hadron Collider (LHC) at CERN. The searches for new physics are often guided by BSM theories that depend on many unknown parameters, which, in some cases, makes testing their predictions difficult. In this paper, machine learning is used to model the mapping from the parameter space of the phenomenolog...
April 16, 2019
We explore the capacity of neural networks to detect a symmetry with complex local and non-local patterns : the gauge symmetry Z 2 . This symmetry is present in physical problems from topological transitions to QCD, and controls the computational hardness of instances of spin-glasses. Here, we show how to design a neural network, and a dataset, able to learn this symmetry and to find compressed latent representations of the gauge orbits. Our method pays special attention to s...
January 17, 2019
These are lecture notes for a course on machine learning with neural networks for scientists and engineers that I have given at Gothenburg University and Chalmers Technical University in Gothenburg, Sweden. The material is organised into three parts: Hopfield networks, supervised learning of labeled data, and learning algorithms for unlabeled data sets. Part I introduces stochastic recurrent networks: Hopfield networks and Boltzmann machines. The analysis of their learning ru...