April 11, 2024
We compare how the impossibility of a universal work extractor from coherence arises from different approaches to quantum thermodynamics: an explicit protocol accounting for all relevant quantum resources, and axiomatic, information-theoretic constraints imposed by constructor theory. We first explain how the impossibility of a universal work extractor from coherence is directly implied by a recently proposed constructor-theoretic theorem based on distinguishability, which is...
February 14, 2004
A short introduction on quantum thermodynamics is given and three new topics are discussed: 1) Maximal work extraction from a finite quantum system. The thermodynamic prediction fails and a new, general result is derived, the ``ergotropy''. 2) In work extraction from two-temperature setups, the presence of correlations can push the effective efficiency beyond the Carnot bound. 3) In the presence of level crossing, non-slow changes may be more optimal than slow ones.
January 3, 2001
It is possible to extract work from a quantum-mechanical system whose dynamics is governed by a time-dependent cyclic Hamiltonian. An energy bath is required to operate such a quantum engine in place of the heat bath used to run a conventional classical thermodynamic heat engine. The effect of the energy bath is to maintain the expectation value of the system Hamiltonian during an isoenergetic expansion. It is shown that the existence of such a bath leads to equilibrium quant...
March 28, 2024
Quantum coherence has been shown to impact the operational capabilities of quantum systems performing thermodynamic tasks in a significant way, and yet the possibility of genuine coherence-enhanced thermodynamic operation remains unclear. Here we show that only the presence of energetic coherence -- coherence between levels with different energies -- in steady-state quantum thermal machines can lead to genuine thermodynamic advantage. On the other hand, engines showing cohere...
January 28, 2004
Thermodynamics teaches that if a system initially off-equilibrium is coupled to work sources, the maximum work that it may yield is governed by its energy and entropy. For finite systems this bound is usually not reachable. The maximum extractable work compatible with quantum mechanics (``ergotropy'') is derived and expressed in terms of the density matrix and the Hamiltonian. It is related to the property of majorization: more major states can provide more work. Scenarios of...
March 19, 2021
The quantum ergotropy quantifies the maximal amount of work that can be extracted from a quantum state without changing its entropy. Given that the ergotropy can be expressed as the difference of quantum and classical relative entropies of the quantum state with respect to the thermal state, we define the classical ergotropy, which quantifies how much work can be extracted from distributions that are inhomogeneous on the energy surfaces. A unified approach to treat both quant...
August 18, 2019
The impacts of quantum coherence on nonequilibrium thermodynamics become observable by dividing the heat and work into the conventional diagonal part and the other part relaying on the superpositions and the time derivative of Hamiltonian. Specializing to exactly-solvable dynamics of Larmor precession, we build a quantum Otto heat engine employing magnetic-driven atomic rotations. The coherence induced by the population transition guarantees the positive work output when the ...
July 11, 2016
We investigate fundamental connections between thermodynamics and quantum information theory. First, we show that the operational framework of thermal operations is nonequivalent to the framework of Gibbs-preserving maps, and we comment on this gap. We then introduce a fully information-theoretic framework generalizing the above by making further abstraction of physical quantities such as energy. It is technically convenient to work with and reproduces known results for finit...
July 21, 2017
Exploiting the relative entropy of coherence, we isolate the coherent contribution in the energetics of a driven non-equilibrium quantum system. We prove that a division of the irreversible work can be made into a coherent and incoherent part, which provides an operational criterion for quantifying the coherent contribution in a generic non-equilibrium transformation on a closed quantum system. We then study such a contribution in two physical models of a driven qubit and kic...
May 26, 2023
Quantum work capacitances and maximal asymptotic work/energy ratios are figures of merit characterizing the robustness against noise of work extraction processes in quantum batteries formed by collections of quantum systems. In this paper we establish a direct connection between these functionals and, exploiting this result, we analyze different types of noise models mimicking self-discharging, thermalization and dephasing effects. In this context we show that input quantum c...